
Separation strategies for three pitfalls in A/B testing

Luo Lu
Twitter Inc.

1355 Market Street, Suite 900
San Francisco, California, USA

llu@twitter.com

Chuang Liu
Twitter Inc.

1355 Market Street, Suite 900
San Francisco, California, USA

chuang@twitter.com

ABSTRACT
A/B testing has become an invaluable tool for guiding com-
plex business decisions. It has a long history in the natu-
ral sciences and hence is known under many other names
such as controlled experiments, randomized experiments,
treatment/control studies as well as others. Twitter pro-
vides a global communication network with a vast number
of use cases such as expressing opinions, communication with
friends, following news and more. Due to the heterogeneity
of use cases and the intrinsic complexity of user behavior,
A/B testing is used extensively by Twitter to guide product
launches and iterating on existing products. In this paper,
we discuss our best practices for three common pitfalls ob-
served while reviewing experiment designs and metrics at
Twitter. These pitfalls are generic enough to be of benefit
to the wider community. They are “dilution”, “carry over
effect” and “novelty impact”. All of the three corresponding
strategies, coincidentally, involve separation.

1. INTRODUCTION
1.1 Background
As online products and business become increasingly sophis-
ticated, A/B testing is now an important tool for gaining
business insights and driving decisions making. Some of the
most well-known users of A/B testing include social net-
works such as Facebook [2, 1] and LinkedIn, search providers
such Bing and Google[10], e-commerce sites such as Amazon
and eBay as well as others [9]. A/B testing is deceptively
difficult to master, as famously said by Ron Kohavi, “Get-
ting numbers is easy, getting numbers you can trust is quite
difficult.” [7]. We also rephrase this as “Getting numbers is
easy, using the numbers correctly is quite difficult.” In order
to obtain correct results and correctly draw conclusions from
them, it is crucial for a company to understand how to ac-
curately and efficiently set up, implement and interpret the
results from an experiment. Due to the complexity of the
products and user behaviors, we consider each experiment
on a case by case basis and the list of “to-do”and“not-to-do”

is extensive. Marvelous insights and experiences have been
shared in [7, 3, 5, 6]. We would like to add some of our own
experiences from the thousands of experiments at Twitter
that we think are generic enough for the wider community.

1.2 A/B testing at Twitter
A brief understanding of Twitter’s experimental framework
is required to grasp some of the concepts covered in the
following sections. Any experimental framework involves at
least three components, a“randomization algorithm”, an“as-
signment method” and a “data path” [8]. Twitter’s frame-
work is no different, however the details within each compo-
nent may be unfamiliar. The randomization algorithm di-
vides users into two or more groups (called buckets). Users
in the control bucket are presented the original application
or website. Users in the other buckets, called case buckets,
are presented a new variant of the application or website.
We call this assignment procedure a ”choose call”. It in-
volves filtering the user based on parameters such as OS
type or country as well as a hash based randomization. In
order to scale up to a large fleet of servers, we compute the
hash value as a hash of the user id and the experiment id
[4, 8]. It is up to the experimenter to decide how to imple-
ment the filters in the“choose call”and we will discuss in the
following sections some pitfalls associated with it. Secondly,
the assignment method relates to the implementation of how
variants are delivered to the user. This does not relate to any
pitfalls so we don’t discuss it here. Finally, the data path is
the process of collecting relevant metrics from each bucketed
user. We call the time at which Twitter’s framework starts
recording metrics from the user the “scribe impression” or
the user being “scribed”. This point may be the same as
the “choose call” or it could be at a later time. Similarly,
it is also up to the experimenter to choose the location of
the “scribe impression”. These concepts will be used in the
pitfalls discussed below.

Furthermore, at Twitter, we primarily use “users” as exper-
imental units. Some experiments, like advertisement tar-
geting algorithm changes could use “user request” as exper-
imental units by randomly serving different variants per re-
quest, and measuring how users respond. However, most of
Twitter product operates around either getting users into
a healthy state by improved presentation of content or im-
proved content recommendations. For these experiments, it
is important to provide a consistent experience to each user
during the experimental period [4]. For metrics, we need
to measure the long term impact on important user met-

rics, and answer questions like “Does getting users to follow
more accounts help get these users back on Twitter more
often down the road?”. To address these needs, most of the
experiments in Twitter use “user” as the experimental unit
and keep each user in one bucket during the experiment.

At last, compared to choosing among statistical methods
for A/B testing, it is much trickier to decide among types
of data to test. Given two buckets of users in a time period
(lasts for m days), there are different levels of granularity to
compare the user engagement. Let’s use “Tweet” as an ex-
ample, we list them below from the“coarsest” to the“finest”:

1. Unique user: the percentage of users in each bucket
who tweet at least once in the time period;

2. Daily unique user: the average number of days a user
tweets at least once;

3. Average action taken: the average number of Tweets
sent by each user.

The first measurement is the“coarsest” since it only depends
on whether each user tweet or not, without differentiate from
the users who tweet one hundred times and the users who
tweet only once during the experiment. While for the third
data type, each user’s weight is decided by the number of
tweets he/she sent. The second data type is in between the
first and the third ones: the weight of the user who tweets
the most is at most m times of the user who tweets only
once. By comparing the three data types between buckets
we are able to answer three different questions and each one
cannot be replaced by another. In other words, if the users
in the case bucket tweet more than the users in the control
bucket users in regards of the first data type, it does not
necessarily leads to the same order for the second or the
third data type. Same thing happens for the other two data
types. All of the three data types can be used to do ab test
and might give different and even opposite results. As that
being said, which data type to choose is critical to the ab test
results and is usually determined by the goal we set for each
experiment as well as the “target” users. For the features
aiming at boost the number of tweet for the “mature” users,
we expect the unique user tweet percentage is close to 100%
before and during the experiment for both buckets and only
the second or the third data type will be sensitive enough
to detect the improvement. Inherently, from the coarsest
to the finest data type, their sensitivity to the (over) active
users increases and accordingly less and less conservative.
For the flexibility for the experimenters to choose from, we
have all three data type metrics available from the pipeline.
To achieve that, we store the numbers for each bucket as:
Si: the number of unique users who are scribed on day i;
Di: the number of unique users who have been scribed since
day 1 till day i; Si(φ): the number of unique users who are
scribed and take the action φ on day i (φ could be “Tweet”,
“Retweet”, “Follow”, “Be followed”, etc.); Di(φ): the number
of unique users who have been scribed and taken the action
φ since day 1 to day i and Ti(φ): total number of φ taken
by the users on day i.

1.3 Contribution

In this paper, we focus on three common pitfalls for exper-
imentation: “dilution”, “carryover effect” and “novelty im-
pact”. For the sake of convenience, we define all case buck-
ets as “adding a new feature” to Twitter. The users in the
case bucket are the ones who see the “new feature” while the
users in the control bucket do not see it.

1. Dilution. Dilution happens when many of the users
in the case bucket do not experience the new feature.
Twitter products and features vary greatly in their
user coverage, and many of them only affect a frac-
tion of users. Dilution deteriorates the A/B testing
power [8], and hence may not fully capture the effect
of the new feature. In order to address this problem,
we separate “choose call” – the logic to check if the
new feature should be visible to a user, and “scribe
impression”– the logic to decide if a user should be
counted for the experiment. This separation gives us
increased flexibility to address dilution problems.

2. Carry over effect. Carry over effect happens when past
experiments, which a user was part of, affect their be-
haviors in current experiments. It could also happen
within a single experiment if being part of current ex-
periment affects their chances to get into the experi-
ment again in following days. One solution is to run
an A/A test prior to running the experiment and “re-
bucket” the users if there are significant changes in
the key metrics [5]. This paper focuses on the cases
when the past experiment is one iteration of the cur-
rent experiment. We claim that the previous buck-
eting is reusable as long as no bias appears to the
number of users who are scribed, Si or Di. They
are also the denominator of all the key metrics based
on the three “data types” in section 1.2. Separating
the scribed users into “first time visitors” and “return
visitors” and recording their daily (or hourly) counts
in a “bucket size status table”, gives us an efficient
method for checking bucket sanity without requiring
extra tests, as well as to decide whether a re-bucketing
is necessary to address carry over effects.

3. Novelty impact. Novelty impacts happen when users
behave differently when they are first exposed to an
experiment [8, 5]. It is a common and well known is-
sue among user interface experiments because it takes
time for users to get used to the new changes. Yet
there is little literature discussing possible solutions.
[5] observes that in general, novelty impact rarely re-
verses the initial effect, for instance where the feature
is initially negative until users learn it and get used to
it, then it starts to be positive. We do see a couple
of experiments as exceptions of that, mostly due to
external effect (such as an OS update which invalided
the experiment code) instead of user behavior change.
Based on different sources of novelty impact such as
user curiosity, learning curve, user structure lagging
and external effect, there are different ways to get the
novelty impacted days. In this paper, we aim to pro-
vide the practitioner with a generic method based on
the daily metric, to find a separation date after which
the metric has stabilized.

2. PITFALL I – DILUTION
Twitter has a vast spectrum of features. Apart from the
“me” profile, there are three timelines: a home timeline
serves Tweets from followed accounts; a discovery timeline
serves Tweets and account recommendations; an activity
timeline provides information about activities in a user’s so-
cial circle. Twitter enables users to express themselves via
Tweets, Retweets, Favorites etc. and provides a search box
for users to search for Tweets, friends and events.

Most users use only a subset of these features. Dilution
occurs if a significant proportion of users in the case bucket
do not see or use the feature experimented on. In this case,
even if the new feature effectively changes the “target” users’
behavior, we may not be able to measure it due to dilution.

In most experiments, it is trivial to focus only on the“target”
users, both conceptually and practically. For example, if the
new feature is to send all new users an email right after they
sign up, introducing how Twitter works, the target users
are the users who receive the email. In this case, all the
users to whom we show the new feature are also the ones we
want to scribe. In other words, the “choose call” and “scribe
impression” location should overlap, when the email is sent.
Unfortunately, this is not always the case.

2.1 Example
The “nearby timeline” experiment. Right now Twitter has
three timelines besides the “me” profile page: home time-
line, discovery timeline and activity timeline. On mobile,
users swipe to switch between timelines. This experiment
is to insert a new timeline “nearby timeline” as the second
timeline on mobile and shift discovery and activity timelines
to the third and forth timeline respectively. The “nearby
timeline”, as the name suggests, is to provide local news or
Tweets for Twitter users. Hence it only targets to the users
who have geotag switched on. “Geotag” is the feature that
informs Twitter of the users’ physical locations every time
they open their Twitter apps. The left plot in Figure 1 is
the flow chart of the experiment design. Aware of the poten-
tial dilution problem, the experimenters narrowed down the
users to all mobile Twitter users who have geotag switched
on (we call them “qualified users” now). In their experiment
design, the experimenters “scribe impression” for the quali-
fied users when they land on the first (home) timeline and
show them the“nearby”timeline for those in the case bucket.

2.2 Diagnosis
Even though this experiment focuses on the users with geo-
tag on, dilution still exists. The majority of Twitter users
start their Twitter experience from their home timeline.
When this happens, experiment logic enables the “nearby
timeline” for users in the case bucket and they can poten-
tially swipe. However, a large part of users only use their
home timeline, and never swipe into the new “nearby” time-
line. As a result, the metrics for the case bucket will be
diluted significantly due to the users who do not swipe to
the new timeline during the experiment.

2.3 Separation Strategy
The fundamental problem is those users who are qualified do
not see or use the new feature. In order to address this, the

experiment framework provides an API for experimenters to
pick users based on users properties and the product feature
they are using. It also provides an option to separate“choose
call” and “scribe impression”.

2.4 Best practice
Where to make the “choose call” should be defined by the
experimenters, according to the position and characteristics
of the new feature. The principle is to (1) include only users
who can potentially see the new feature, given (2) insert-
ing the new feature is technically feasible. In the “nearby”
timeline case, we are targeting the mobile Twitter users who
have geotagged switched on and swipe to the second time-
line during the experiment. However, it is too late to insert
the new timeline after they swipe, we make the “choose call”
for all the mobile Twitter users who have geotagged on.

Once we enable the new feature for the users assigned to
the case bucket in the “choose call”, not all of them will see
the new feature, depending on their habit or pattern of using
Twitter. We only want to “scribe” the users who see the new
feature in the case bucket to maximize power and “scribe
impression”at the equivalent location for the control bucket.
Hence, in this example, we only “scribe” the users who swipe
to the second timeline during the experiment, i.e.“discover”
timeline in the control bucket and “nearby” timeline in the
case bucket (Figure 1 right plot).

This design separates the location of“choose call”and“scribe
impression”. It guarantees flexibility in engineering when to
insert the new feature, meanwhile enables us to narrow down
to the “target” users for metrics. This best practice is for ex-
periments which have inherently unavoidable gaps between
“showing the feature to the users” and “the user experienc-
ing the feature”. It also requires the bucketing pipeline to
be flexible enough to allow for this separation.

3. PITFALL II – CARRY OVER EFFECT
It is common practice at Twitter that product teams iterate
on experiments until it reaches a “ready” state, where each
iteration corresponds to a version. Before an experiment
starts, product teams have certain expectation on how users
will respond to it, which may or may not be true. After an
experiment is live, metrics tell us the truth. Based on these
metrics, product teams continue to make small adjustments
and fix bugs until the experiment is“ready”. The final results
are based only on metrics from the last version when the
experiment is in a “ready” state.

Twitter continuously runs a large number of experiments,
and most of the experiments go through multiple versions.
It is well known that experiments running in the past may
affect users’ behaviors in the new experiments that affect
validity of experiment results. [5] describes ways to address
carryover effect caused by past experiments via randomized
bucketing logic. Here, we only focus on the type of carryover
effect caused between versions of the same experiment.

As mentioned in previous sections, in order to give users a
consistent experience, the mapping from a user to an exper-
iment bucket is deterministic. If a user’s experience in a old
version causes him or her to either stop or reduce use of the
feature, it will cause a sample bias in the subsequent ver-

(a) Pitfall – dilution due to the users in case bucket who do not swipe

(b) Best practice – only scribe the users who swipe to the second
timeline in both the control and the case bucket.

Figure 1: Avoid dilution in bucketing

Figure 2: Experiment version 1: daily count of users in the
case bucket (light blue curve) shrinks during the experiment
compared to the control bucket (dark blue curve).

sions. This is because experiments only count users who see
or use the new feature (see Section 2). We will illustrate how
the carry over effect happens using the following example.

3.1 Example
This experiment has two versions with a negligible change
between them. Figure 2 and 3 are the daily bucket size (Si

in Section 1.2) charts of the two versions, light blue for case
bucket and dark blue for control bucket. It shows the num-
ber of users being scribed in each bucket every day. The
bucket setting is 1 : 1 for the control and the case buck-
ets. The first version starts at a 383.4K users for the control
bucket and 382.7K users for the case bucket, which is con-
sistent with the bucket setting. However, along the eight
days of version 1, a gap gradually emerges between the two
curves, showing much less users in the case bucket compared
to control at the end of the first version. As described in
Section 1.2, when the experiment id and bucket setting are
unchanged, the assignment of users to buckets will be un-
changed between versions since the input of the hash func-
tion is unchanged. Therefore, the same gap shows up at the
beginning of the second version. The experimenters find out
that the case bucket performs overwhelmingly better than
the control bucket in the second version but not for the first.
Given that usually we use the last version’s results as the
final results, a clear victory is claimed for the case bucket.
Is that true?

3.2 Diagnosis
Bucket size abnormally is usually a red flag in A/B testing.
It could indicate an error in one or some of the bucketing
logic: randomization algorithm, assignment method or data

Figure 3: Experiment version 2: bucket size imbalance is
observed at the beginning of this version

path. Code bugs could be another possibility. Sometime,
the new feature changes the user behavior for the users in
the case bucket, reflected by a gap of the daily bucket size
between the buckets. Some of the sources may affect the
correctness of the experiment. Before we trust the experi-
ment results, it is critical to understand the reason behind
the bucket size abnormality if any. In the example, the gap
between the buckets gradually enlarges over the time and
we suspect it is caused by “organic” lose of users in the case
bucket – one situation of carry over effect. The strategy in
the next section helps us verify the hypothesis.

3.3 Separation Strategy
Using the same notation as in Section 1.2, we show how
we can make use of Di(φ) and Si(φ) to check bucket size
status. At first, we separate each “scribe impression” to be
either “first time visitor” or “return visitor”. “first time visi-
tor” refers to the first time a user is being scribed, the rest
of the cases are called “return visitor”. In spite of what
the names suggest, “first time visitor” and “return visitor”
do not refer to actual people, but different types of scribes.
The main difference between these two types and the reason
for separating them lie here: from each user’s perspective,
the first time being scribed happens before exposed to the
new feature but not for the subsequent ones. For example, if
the new feature is to give a more detailed description when
you click “follow” for that person, the scribe impression lo-
cation is when you make the click, at which you are unaware
of the new feature. On the other hand, you might have al-
ready noticed the longer description for the second or third
time you make the “click” (i.e. be scribed “return visitor”)
and your altitude towards the new feature will potentially
influence counts of “return visitor”. Therefore, whether the

gap in the bucket size between the buckets comes from ”first
time visitor” or ”return visitor” becomes a critical clue of the
reason behind the scene.

Denote m as the experiment length, which could represent
either number of days or hours, etc., B(control/case) as the
bucket size setting for each bucket. The formula for the daily
count of “first time visitor” (ai) ,“return visitor” (ri) and the
“return percentage” in the control bucket are

a1 = S1

r1 = 0

ai = Si − Si−1

ri = Di − aiwi = ri/Si−1

for i = 2, . . . ,m. And a′i, r
′
i, w
′
i(i = 1, . . . ,m) are the analogs

for the case bucket.

For each day i = 1, . . . ,m, following are the two bucket size
status testing:

1. whether the daily “first time visitor” counts are within
expectation H0 : ai/a

′
i = B(control)/B(case);

2. whether the daily “return percentage” agrees for the
two buckets H0 : wi = w′i.

For the statistical testing, we assume ai|ai + a′i, a
′
i|ai + a′i,

ri|Si−1 and r′i|S′i−1 all follow a binomial distribution. For
testing “first visitor”, we use confidence interval generated
from Binomial(ai+a

′
i, B(control)/(B(control)+B(case)) and

Binomial(ai +a′i, B(case)/(B(control)+B(case))). For test-
ing “return percentage”, we use t test.

Therefore, we have two test results each day, for “first time
visitor” and for “return percentage”. Typically, consecutive
two or three day abnormalities in either test is a red flag. Ab-
normality in “first time visitor” is usually caused by experi-
ment logic error or code error. While for“return percentage”
abnormalities, if there is a significantly higher percentage of
return visitors in case bucket, it is likely that the new fea-
ture successfully encourages the users to return more often
and vice versa. For most of the features, it is a win if the
former happens since we always want to increase “scribe im-
pression” at Twitter. An exception is when the new feature
is functional, that is to help user accomplish a task, being
scribed more than once indicates an inefficiency of the new
feature.

3.4 Best practice
Table 1 is the bucket size status table of the first version
and it tells us where the gap between buckets comes from.
The “first time visitor” counts are normal for both the buck-
ets while case bucket is losing “return visitor” at the second
half of the experiment. One of the possible explanation is
that part of the users in case bucket dislike the new fea-
ture and thus return less than if they were in the control
bucket. Therefore, at the end of the first version, there are
less unhappy users in the case bucket relative to the control
bucket. The second version starts with the same group of
users which also has this bias in the user structure. It is
not hard to imagine that the results of the second version

will be biased toward the case bucket since the proportion
of the users who love the new feature is higher than in the
control. For both versions, we need to be very careful when
interpreting the daily metrics because they lost a different
portion of (unhappy) users over days. For version 1, we
could get around the sample bias issue as long as we look
into the aggregated metrics (“Unique user” data type in Sec-
tion 1.2) across the whole period, and count everyone who
has ever been scribed from day one. However, we cannot do
the same for the second version because sample bias exists
from day one due to the carry over effect. If the experiment
results from the second version are used, there is a high risk
of making a wrong decision.

Checking the bucket size status table frequently during the
experiment is one of the most important sanity checks. The
table also serves as signal of how the users are enjoying the
new feature. Opening a new experiment is an alternative
of starting a new version using the same experiment id. It
shuffles the users again and avoid the carry over effect from
the previous version, at the cost of user experience inconsis-
tency. Always open a new experiment if the user structure
has changed at the end of the current version, indicated by
the “return percentage” abnormality.

4. PITFALL III – NOVELTY IMPACT
The majority of experiments aim to improve long term user
experience. For experiments involving a user interface change,
it may take several attempts for the users to become famil-
iar. For experiments involving social components, such as
encouraging more social interactions, it may take time for
the impact to mature.

Novelty impact is when the short term user behavior is not a
good indicator of the longer term user behavior. It is a well
known phenomenon in A/B testing. However, the associated
methods and discussion is still scarce in literature.

4.1 Example
The left plot in Figure 4 is the daily chart for “mention
sent” from an experiment during September 25 and October
9, 2013. The case bucket (red curve) has higher percentage
of users who sent mentions than the control bucket (blue
curve) for the first couple of days. Then the gap between
the curves shrinks gradually and at last flips to the other
side. The average daily “mention sent” percentage for the
case bucket is 5.64% larger than the control bucket, which
is significant based on our statistical tests.

4.2 Diagnosis
In most cases, we can only afford to run the experiment for a
much shorter time compared to the desired long term effect.
This short time frame is sensitive to transient user behav-
ior near the beginning, i.e. novelty impact. It is possible
that ignoring them will create misleading or even opposite
conclusions.

1. Curiosity. Even if we put a new button on the Twitter
user interface which leads to nowhere, there will be
many users who click on the button due to curiosity
for the first couple of days. This causes an initial bump
in the engagement of the new feature. After the users

Bucket Oct20 Oct21 Oct22 Oct23 Oct24 Oct25 Oct26 Oct27 Oct28 Oct29

Control
ai(k) 383.40 142.63 111.51 98.13 86.76 78.88 65.68 64.38 69.38 63.26
wi(%) 0 31.40 27.80 25.15 22.90 20.99 18.35 17.98 18.85 17.90

Case
ai(k) 382.65 142.50 111.56 98.26 87.02 77.54 64.68 64.47 68.77 63.59
wi(%) 0 31.32 27.63 25.01 22.62 20.80 18.17 17.67 18.62 17.59

Table 1: . Bucket size status table: numbers in bold font are numbers outside of confidence interval. At the last 6 days, the
case bucket has significantly less “return visitors” than the control bucket

Figure 4: Novelty impact detection
The blue and red curves on the left plot are the daily percentage of users who sent mentions during the experiment for control
and case bucket respectively(ai, bi, i = 1, . . . , 15). The curves on the right plot are the daily percentages relative to control
(therefore, the blue curve is always at 100%). The shadow to the right of the vertical dashed line marks the confidence interval
generated from the second half of the red curve zi from step 2 of Algorithm1. The flag on September 28 represents the last
day that novelty impact is detected.

become used to the new feature, their behavior will
regress to the long term effect of the new feature.

2. Learning curve. Sometimes it takes time for the users
to get used to the new feature, during which time we
may see a decrease in the user’s engagement with the
new feature. However, after the users become familiar
with the new feature, they may increase their engage-
ment again. In those cases, the novelty impact is more
likely to express as a dent at the beginning of the ex-
periment.

3. User type structure. At the first couple of days of the
experiment, most of the users being scribed are fre-
quent users for Twitter. Lets use a mock example to
illustrate this. Assume Group A are the users who use
Twitter once everyday while Group B are those who
use Twitter once every week. The number of users in
Group A and Group B is of the ratio 65 : 35. Ex-
periment E is general enough to cover all the users
from both groups once they sign in Twitter. For the
first day of the experiment, there will be about 65 : 5
number of users being scribed from Group A and B.
The aggregated ratio for the first two days would be
around 65 : 10. At the seventh day of the experiment
we start getting the same ratio as the overall Twitter
user population. For this example, novelty impact ex-
ists in “Unique user” data type but not for the other
two. What is a good representative group of users for
the experiment depends on the different user compo-
sition of the “target” users of the new feature.

4. External Effect. As mentioned earlier, some changes
in the environment of the experiment, such as OS or
browser updates, could disrupt the implementation of
the experiment. Strictly speaking, this is more of a
bug than an inherent novelty impact. Nevertheless, a
change may be observed on the metrics and the sep-
aration strategy in the next subsection will help us

capture it. In fact, there have been a couple of exper-
iments in Twitter where novelty impact is identified
at the same day for almost all the metrics, followed
by abrupt and dramatic changes in the time series.
This suspicious phenomenon successfully caught peo-
ple’s attentions and external changes were found to be
the culprits.

4.3 Separation strategy
Different types of novelty impact (caused by different rea-
sons) can be corrected using various models and algorithms.
Given that a large part of the novelty impact involves mul-
tiple reasons which are hard to isolate from each other, we
introduce a generic method that requires no knowledge of
the source of the novelty impact. Given two time series
a0, a1, . . . , am for control bucket and b0, b1, . . . , bm for case
bucket. ai and bi could be the percentage of users who take
certain action in that bucket (“Daily unique user”) or the
average number of actions taken by the users in that bucket
at daily or hourly basis (“Average action taken”). Algorithm
1 describes how we detect novelty impact automatically. We
use the ratio of ai and bi to cancel the daily (hourly) effect
and assume at first the ratio for the second part has stabi-
lized. The algorithm generates an upper and lower bound
for the ratio from the stabilized part. It then proceeds to
trace back from the middle to record the first value which
exceeds the confidence interval for two consecutive points.
If the value we get is the close to the middle point, we rec-
ommend that experimenters should continue the experiment
for more days (hours).

4.4 Best practice
After removing the novelty impacted days, the mean of daily
“mention sent”percentage is 3.14% lower in case than control
and turns out to be insignificant. The length that novelty
impact lasts usually varies among the metrics and the new
features. Customizing the days we exclude due to novelty

Algorithm 1 Algorithm for detecting novelty impact

Step 1. For each day/hour, calculate the ratio of case
and control metrics: zi = bi/ai (i = 0, 1, . . . ,m).
Step 2. Estimate the confidence interval (lb,ub) based
on z[m/2], z[m/2+1], . . . , zm.
. Normal distribution is the rule of thumb distribution

for zi
Step 3. For k ∈ {[m/2]− 1, [m/2]− 3}
if minj∈{k,k−1,k−2} zj > ub or maxj∈{k,k−1,k−2} zj < lb
then

zi has not been stabilized, return
end if
Step 4. k = [m/2]− 4
while k ≥ 3 do

. The number “3” is a parameter
if minj∈{k,k−1,k−2} zj > ub or maxj∈{k,k−1,k−2} zj <

lb then
break

end if
k = k − 1

end while
if k ≥ 3 then

Novelty impact is detected and lasts from the first day
until day k.

elseif
No novelty impact is detected.

end if
return

impact guarantee us the largest power in the subsequent
statistical testing.

5. CONCLUSION
We have discussed three pitfalls in user based A/B testing
together with three corresponding separation strategies for
addressing them. The first pitfall, dilution, usually related
to the bucketing logic, is commonly observed when there
is a gap between when the new feature shown to the user
and when the user engages with it. The solution we recom-
mended is to separate “choose call” and “scribe impression”,
which allows us to scribe only part of the users for metric
calculation. The second pitfall describes when a new fea-
ture influences a user’s behavior and the effect is carried
over to next time the same user engages with the feature.
This could be within the same experiment version or hap-
pen at the next version. Using the bucket status table and
separating “first time visitor” and “return visitor” helps de-
tect this problem and distinguish it from other reasons for
bucket size anomaly. This pitfall is usually organic and un-
avoidable. Nevertheless, ignoring it can potentially lead to
biased results especially when starting a new version. Fi-
nally, we proposed a generic algorithm for detecting and
correcting for novelty impact on time series data. Further-
more, it sends an alarm when the time series has not yet
stabilized, which indicates we should run the experiment for
a longer time. We hope that these separation strategies will
benefit the wider community and also raise awareness in the
field to these pitfalls.

6. ACKNOWLEDGMENTS

We wish to thank Jimmy Chen, Linus Lee, Robert Chang,
Matt Knox and Madhu Muthukumar for their valuable dis-
cussions.

7. REFERENCES
[1] E. Bakshy and D. Eckles. Uncertainty in online

experiments with dependent data: an evaluation of
bootstrap methods. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 1303–1311. ACM,
2013.

[2] E. Bakshy, D. Eckles, and M. S. Bernstein. Designing
and deploying online field experiments. In Proceedings
of the 23rd international conference on World wide
web, pages 283–292. International World Wide Web
Conferences Steering Committee, 2014.

[3] T. Crook, B. Frasca, R. Kohavi, and R. Longbotham.
Seven pitfalls to avoid when running controlled
experiments on the web. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1105–1114. ACM,
2009.

[4] R. K. et al. Practical guide to controlled experiments
on the web: Listen to your customers not to the
hippo. KDD, 2007.

[5] R. Kohavi, A. Deng, B. Frasca, R. Longbotham,
T. Walker, and Y. Xu. Trustworthy online controlled
experiments: Five puzzling outcomes explained. In
Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 786–794. ACM, 2012.

[6] R. Kohavi, A. Deng, R. Longbotham, and Y. Xu.
Seven rules of thumb for web site experimenters.
KDD, 2014.

[7] R. Kohavi and R. Longbotham. Unexpected results in
online controlled experiments. ACM SIGKDD
Explorations Newsletter, 12(2):31–35, 2011.

[8] R. Kohavi, R. Longbotham, D. Sommerfield, and
R. M. Henne. Controlled experiments on the web:
survey and practical guide. Data Mining and
Knowledge Discovery, 18(1):140–181, 2009.

[9] J. Overgoor. Experiments at airbnb.
http://nerds.airbnb.com/experiments-at-airbnb/, May
2014.

[10] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer.
Overlapping experiment infrastructure: More, better,
faster experimentation. In Proceedings of the 16th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 17–26. ACM, 2010.

