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ABSTRACT
The measurement of ad effectiveness is one of the central prob-
lems of online advertising. Typically the performance is measured
by investigating the proportion of people who converted or per-
formed other success actions after they saw the ads. These metrics
commonly overestimate campaign effectiveness since they do not
account for users who would have performed actions even if the
campaign did not happen. Conventional metrics also fail to answer
the following questions that are important to advertisers: 1) Which
users convert because they see the ad and which users would have
converted even if they do not see the ad? 2) What is the cumulative
effect of multiple advertising strategies on performance? 3) How
does a campaign affect the size of the potential audience pool?

In this paper we propose a general methodology for assessing
campaign performance that addresses all of these questions. Our
method does not require randomized experiments or additional ads
to be shown. We develop a unified causal modeling framework that
establishes a causal relationship between seeing an ad and perform-
ing an action, which is based on propensity methodology. We de-
rive a novel robust rank test for model validation. We also provide
innovative interpretations of the estimation results by the causal in-
ference, addressing ‘smart cheating’ of online ads (i.e. targeting
the users who are likely to convert even without any ad exposure,
which does not add value to the advertisers). The three components
(model, validation, and interpretation) complete a unified solution
to ad effectiveness measurement. The framework is applied to three
online campaigns involving millions of unique users. Results from
real online campaigns show that this methodology is robust to on-
line data sparseness, high dimensionality and biases from user fea-
tures.

This paper focuses on measuring the effectiveness of online ads,
but the framework is readily applicable to measure the effectiveness
of other kinds of treatments on various user metrics, for example
the impact of different strategies on user engagement metrics.

Categories and Subject Descriptors
G.3 [PROBABILITY AND STATISTICS]: Statistical Comput-
ing; J.1 [ADMINISTRATIVE DATA PROCESSING]: Business,
Marketing
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1. INTRODUCTION
The measurement of ad effectiveness is one of the central prob-

lems of online advertising. It is important to be able to determine

whether an advertising campaign leads to better performance or
not. Typically the success rate1 of a campaign is measured as the
percentage of users who complete a certain desired action; how-
ever, this metric does not provide a complete assessment of per-
formance since 1) it does not account for users who would have
performed actions even if the campaign did not happen, and 2) the
measure of ad effectiveness has multiple dimensions.

We develop a new method for measuring campaign performance
that evaluates three dimensions: 1) the direct effect of a single
advertising strategy on user performance 2) the effect of multi-
ple advertising strategies on user performance, and 3) the effect
of ad campaign on audience pool expansion. We propose a unified
pipeline to measure all three dimensions of performance.

1. The first dimension is a metric that measures uplift of a single
ad placement [31, 19, 10]. Uplift is a metric that measures
change in online brand interest that results from additional
users who are recruited by a campaign. Users who perform
regardless of whether they see an ad need to be discounted,
which requires unbiased estimations of the portion of users
who will convert without ad exposure.

2. The second dimension of our analysis is a metric that mea-
sures the cumulative effect of multiple campaigns on user
performance [6, 24, 10]. Frequently an advertiser may
run several campaigns simultaneously, such as a website
takeover and a mobile campaign, or a video campaign and
a direct response campaign. The advertiser needs to not only
know the uplift of each individual campaign, but also how
each of these campaigns enhance one another. Our analysis
assesses the cumulative effect of these campaigns, and we
call this cumulative effect: synergy.

3. The third dimension of our assessment is to determine how
the potential customer pool changes as a result of the cam-
paign. Typically customers need to show brand awareness
before they are ready to make a commitment to purchase a
product. This process of learning about a product and then
deciding to buy the product is referred to as traveling down
the purchase funnel. Our analysis gives insight on how many
new users have entered the purchase funnel because of learn-
ing about the product in a branding ad campaign.

All the three dimensions described require a fair comparison of
the responses to difference advertising treatments. For example,
the uplift assessment requires a comparison of the success rates of
the people who saw (exposed group) and not saw the ads (control
group, i.e. non-exposed group); and synergy assessment requires

1A success or conversion performance is an action favored by the
campaign, such as click, search or site visitation. Success rate is
the percentage of unique users who take a success action. In this
paper we use success and conversion interchangeably.



a comparison of the success rates of the people who saw ads from
both placements (exposed group) and a single one (control group).
One method to obtain the non-biased assessments of the success
rates, besides our proposed model, is a randomized experiment, i.e.,
an A/B test. The success rates of the two groups are unbiased in an
ideal AB test, because the exposed and control users are randomly
picked from the same audience and have the same characteristics.
However a randomized test may not always be available, and in an
observational advertising campaign the direct comparison between
exposed and control may be biased if control users have different
features than the exposed users. Here’s an example that illustrates
this bias. Imagine a cosmetic product campaign where all of ex-
posed users are females and all of the control users are males. If
the females generally have a larger conversion rate than males, the
uplift (effectiveness) of the campaign could be overestimated be-
cause of the confounding effect of the user features, in this case,
gender. In such cases, the high success rate of the exposed group is
not caused by ads, and hence cannot serve as a fair measurement of
ad effectiveness. In order to establish a causal relationship between
ad treatments and conversions, such biases from user features need
to be eliminated. The intuition behind this argument is illustrated
in Figure 1, where the ad effect on conversion is confounded by the
features (which is gender in this example). One needs to eliminate
the impact of features as in Figure 2 to isolate the real causal impact
of ads on conversions.

An immediate attempt to eliminate the impact of user features is
to estimate individual performance (e.g. conversion or no conver-
sion) using a regression model. Such a model would estimate the
relationship between individual performance (dependent variable)
and independent variables, where the independent variables would
consist of user features and ad exposure indicators. However it is
well known that correlation does not imply causation. Such con-
ventional performance model fails to make the distinction that tem-
poral correlation between ad exposure and performance does not
imply causation. Hence the causal effect of the ad exposure is dif-
ficult to estimate by adjusting the outcome with the user features
directly, which is further shown as in Section 3.4.

To address the problem of biases in ad effectiveness assessment
in the above-mentioned conventional methods, we develop a novel
statistical approach that can be used on online data to address the
three dimensions of performance discussed above. Our methodol-
ogy is based on a causal model that balances the user features of the
exposed and control groups, and hence establishes a cause and ef-
fect relationship between seeing an ad and performing actions. The
causal model enables us to measure the three aspects of ad effec-
tiveness (uplift, synergy, and audience pool expansion) in a unified
framework.

Our causal model is based on a statistical matching approach
utilizing inverse propensity weighting (IPW)[27] and doubly ro-
bust (DR ) estimation [25, 30]. Defining the two ad treatments
as ‘control’ and ‘exposed’, the propensity score is defined as the
estimated probability for a subject to be exposed, given a set of
observed features or pre-treatment covariates. Typical methods to
estimate propensity scores include linear logistic regression [28,
29], semiparametric regression [17], and non-parametereic regres-
sion [11, 22]. More robust results are reached via DR estimator
[25, 30], which is proven to have a smaller asymptotic variance.
This method rapidly becomes popular in various fields, including
economics [12], health care [3], social science [16], politics [14],
online behavior study [9] and advertising [5, 18, 32, 8, 2]. In the
online advertising area, Chan et al. [5] considered the industrial ad-
vertising data, with moderate size. [18] showed that observational
data may lead to incorrect estimates, [32] explored the benefits of

estimating several other parameters of interest and another method
targeted maximum likelihood estimation (TMLE)),[8] used causal
inference for a multi-attribution problem, and[2] used it in an ex-
perimental circumstance.

None of the methods proposed before were used to construct a
full solution to measure ad effectiveness. In addition, the previous
propensity-based methods have not been tested on real live cam-
paigns involving millions of users or addressed the sparsity, huge
volume and large number of user features, which typically exist
with online advertising data.

In our previous publication [35], we proposes a propensity-based
framework that addresses the above problems, but it is lack of two
components: a model validation approach that is robust to outliers
and skewness of the data, and an approach to interpret the result
from business point of view. Also it was not used to propose a full
solution to measure ad effectiveness, including uplift, synergy and
audience pool expansion aspect. In this paper, we devise a unified
pipeline to measure the three aspects of ad effectiveness, and the
modeling framework is divided into the following modules.

1. Model: The propensity-based causal inference framework to
address the sparsity and huge volume in industrial datasets
(Section 2). The framework is first described in [35], and we
briefly introduce it here as a background.

2. Validation: An innovative robust rank test for model valida-
tion (Section 3).
In order to validate our model, we need to check that the
propensity-based weighting method has balanced the control
and exposed groups. The standard approach to check the bal-
ancing effect of the weighting is the standardized mean dif-
ference, i.e. the two sample weighted t-test [26, 15, 21]. This
approach has been applied in various areas, e.g. politics [14],
public health [23], finance and management science [34] and
media [20], etc. However this test is vulnerable to the skew-
ness and outliers in covariate distributions, which is often
the case in advertising data. To address the non-robustness
in the model verification of the traditional method, we devise
a novel robust rank test for covariate balancing verification.
The advantage of the proposed method is verified with sim-
ulation. To the best of our knowledge, we are the first to ad-
dress the skewness of advertising data with a robust weighted
rank test.

3. Application: The above approaches are applied to three on-
line campaign involving millions of unique users, to assess
three aspects of ad effectiveness: uplift, synergy, and audi-
ence pool expansion (Section 4).

4. Interpretation: Novel interpretations of the results, address-
ing ‘smart cheating’ of online ads (Section 5).
A major concern for online advertising is that, some of the
users might convert even without any ad exposure. Target-
ing on this part of users might result in high conversion rates
but actually does not add to the value of the advertisers. We
devise a strategy to interpret the calculation result, which
reveals the ‘smart cheating’ or the ‘honest reaching’ in ad
placements.

Our framework is not limited to online advertising, but is also ap-
plicable to other circumstances (e.g., social science) where causal
connection needs to be built with observational data.

2. BACKGROUND
In this section we briefly review the causal inference framework

as in [35], which addresses the sparsity, huge volume, and large
amount of features in real live campaigns.

The causal effect is measured by comparing a specific treatment
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(exposure) toward another (control). For example in the case where
we measure the effect of a website takeover in conjunction with
a targeted display campaign, ‘exposure’ treatment is impressions
from both placements while ‘control’ treatment is impressions only
from the targeted display placement. Each subject has two poten-
tial outcomes Yc and Ye under control and exposure treatments, re-
spectively. However we only observe a single outcome for a given
subject.

Suppose that the control (e.g. no ad impression) and exposure
(e.g. ad impressions) treatments are applied to two groups of sub-
jects with no overlaps, indicted by zi = 0 (control group) or 1
(exposed group) for subject i = 1, 2, ..., N . The success metric
(such as conversion), is indicated by yi = 0 or 1. A naive way to
estimate E(Ye) and E(Yc) is to calculate the average success rates
of the two groups, respectively, as in Equations 1 and 2.

rnaive,exposed =
1∑
i zi

∑
i

ziyi; (1)

rnaive,control =
1∑

i(1− zi)

∑
i

(1− zi)yi. (2)

The difference or ratio of rnaive,exposed and rnaive,control can be
used to evaluate the effectiveness of exposure, as in Equations 3
and 4. In the rest of the paper we will use amplifier to indicate the
ratio of the conversion rates of the exposed and control groups.

Dnaive = rnaive,exposed − rnaive,control; (3)
Rnaive = rnaive,exposed/rnaive,control. (4)

The naive estimators are unbiased if the control and exposed groups
of users are randomly sampled from the population. However in
observational studies, the ad treatments might be highly related
to user features, such as network activity, website visitation, de-
mographics, etc. In such cases, the estimated rnaive,exposed and
rnaive,control cannot represent the whole population, and hence it
does not ensure the comparison of the two groups is on equal foot-
ing.

A straightforward approach to eliminate the impact of user fea-
tures on the outcome, is to adjust the outcomes with a set of user-
level covariates Xi as well as treatment indicators, i.e. fit a model
yi ∼ f(Xi, zi). However the estimated effect of zi may not nec-
essarily imply causal effect, since the model may not correctly ad-
dress the relationship between zi and Xi. This is further discussed
in Section 3.4.

A sound approach to address the different features of the control
and exposed groups is to use the IPW, which considers the treat-
ment zi as a random variable depending on a set of pre-treatment
covariates Xi for each subject i.

We define propensity score as the probability p̂i = P (zi =
1|Xi), ∀i, whose estimator p̂i is usually obtained by fitting a model
P̂ (X) to estimate probability to be exposed with respect to the co-
variate X . Specifically we model p̂i ∼ P̂ (Xi) where zi = 1 with
probability p̂i. The basic idea is to use the estimated p̂i to match
the control and exposed groups, rather than to match the multi-
dimensional X .

The IPW method proposes that each control subject is weighted
by 1/(1 − p̂i) and the exposed subjects is weighted by 1/p̂i.
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Hence the weighted success rates of the control and exposed groups
are defined as in Equations 5 and 6.

ripw,exposed =
1∑
i 1/p̂i

∑
i

ziyi/p̂i; (5)

ripw,control =
1∑

i 1/(1− p̂i)

∑
i

(1− zi)yi/(1− p̂i). (6)

The IPW estimation of ad effectiveness (difference and amplifier)
are then defined as the difference and ratio of ripw,exposed and
ripw,control respectively.

With proper assumptions [27]3, the IPW is proved to be unbi-
ased.

The above estimator measures the average exposure effect over
the whole population. In practice, we may also be interested in the
average exposure effect on the subpopulation of subjects who ac-
tually got exposed, which is called the treatment on treated effect
(TTE). For this estimation, the control subjects are weighted by
p̂i/(1− p̂i) and the exposed subjects are not weighted, as in Equa-
tions 7 and 8. Hence the ad effectiveness is measure by the differ-
ence or ratio (amplifier) of ripw,tte,exposed and ripw,tte,control.

ripw,tte,exposed =
1∑
i zi

∑
i

ziyi; (7)

ripw,tte,control =
1∑

i(1− zi)p̂i/(1− p̂i)

∑
i

(1− zi)yip̂i/(1− p̂i).

(8)

In this paper we choose to use GBDT to model the propensity
score (P̂ (X)) and success probability under control (M̂0(X)) and
exposure (M̂1(X)) treatments with covariate X . We compared
GBDT with several popular methods, including PCA [13] for fea-
ture selection, and logistic regression, LASSO [33] and random
forest [4], and verifies that GBDT outperforms these methods and
provide reasonably good estimations. Note the choice of propensity
model is not the focus of this paper. To improve the computation
efficiency, it is possible to choose more scalable models and algo-
rithms, for example logistics regression propensity models and the
scalable algorithms in [1].

Also to deal with the large volumes of users, we divide the whole
dataset into subsamples, and conduct the analysis within each data
chunk. The computation on each of the subsamples yields an esti-
mation of ad effectiveness, and the point estimation and variation
of the population-level ad effectiveness are summarized from the
collected subsample estimations.

2The basic intuition is that, a control subject belongs to its group
with probability 1 − p̂i, and hence it is weighted by the inverse of
this probability to infer the situation of the population. Similarly
for the exposed subjects. See [25] for proofs.
3Assumption 1: Stable unit treatment value assumption. “The
(potential outcome) observation on one unit should be unaffected
by the particular assignment of treatments to the other units" [7].
Assumption 2: Strong ignorability of treatment assignment (also
called “Unconfoundedness”)[27]. Given the covariates X , the dis-
tribution of treatment assignments is independent of the potential
outcomes.



3. MODEL VALIDATION WITH RANK
TEST

As mentioned in Section 1, the propensity-based weighting
method in Section 2 is aiming to balance the control and exposed
groups. The conventional standardized mean difference is not ro-
bust to skewness in covariate distributions. In this section we pro-
posed a novel weighted rank test for this task, which completes the
framework with robust covariate balancing effect checking.

Suppose each of the users are assigned weight wi according to
IPW or IPW the TTE estimator. The conventional method utilizes
the test statistic µexposed−µcontrol√

σ2
exposed∑
i zi

+
σ2
control∑
i(1−zi)

∼ N(0, 1), for each feature

h with observed covariate xi,h,
where µexposed = 1∑

i ziwi

∑
i zixi,hwi, σ2

exposed =
1∑
i ziwi

∑
i zix

2
i,hwi − µ2

exposed and µcontrol and σ2
control are

computed similarly.
However, the standardized mean difference test is vulnerable to

heavy-tail distributed features and outliers. In advertising dataset,
the user activity and features are typically heavy-tail distributed,
which can be seen in Figure 7 (a) (b). In this paper, we pro-
posed a weighted Mann-Whitney-Wilcoxon rank test to deal with
the heavy-tailness of the observed dataset.

The Mann-Whitney-Wilcoxon rank test [21, 36] is a nonpara-
metric test for checking whether a sample is stochastically larger
than another sample. It is known that the Mann-Whitney-Wilcoxon
rank test does not assume any specific form for the distribution of
the population and hence is more robust when the underlying dis-
tribution is not normal. The original version of the MWW test is
developed in multiple ways, for example in [37]. In the causal
inference framework, each observation is weighted according to
its propensity score. We derive a weighted version of the Mann-
Whitney-Wilcoxon rank test to compare the similarity between the
exposed and control users, which was not developed by previous
work.

Note that by utilizing the rank test, one is no longer testing that
the (weighted) control and exposed groups have the same mean
user covariates; rather, it is testing whether the distribution of the
user covariates from one group is stochastically larger than the
other. Hence the rank test is substantially different than the stan-
dard mean test, in terms of both computation and the hypothesis
being tested.

We first complete the derivation in Section 3.1 and 3.2, corre-
sponding to two cases: whether there are ties in the data. We then
illustrate how the test can be applied to IPW model validation in
Section 3.3. The advantage of the proposed rank test over the con-
ventional test are shown in Section 3.4.

3.1 Weighted Mann-Whitney-Wilcoxon Rank
Test

The Mann-Whitney-Wilcoxon test statistic is defined as follows:
suppose that there are i.i.d. continuous samples S1, . . . , Sn, and
i.i.d. samples T1, . . . , Tm, define U =

∑n
i=1

∑m
j=1 I(Si ≤ Tj).

Under the null hypothesis that Si’s and Tj’s are from the same dis-
tribution, u = U−µ

σ
, wtih µ = E[U ] = mn

2
and σ =

√
V ar(U) =√

mn(m+n+1)
12

, is asymptotically distributed as Normal(0, 1).
The Mann-Whitney-Wilcoxon u statistic is an approximation to∫
F (S)dG(T ), where Si ∼ F and Tj ∼ G. Most of the gen-

eralization of MWW test, e.g., [37], follow the same proof line.
We develop a weighted version of the test following similar idea as
below.

Suppose we assign a weight to each observation, say we as-

sign s1, . . . , sn to S1, . . . , Sn and t1, . . . , tm to T1, . . . , Tm, then
U∗ =

∑n
i=1 si

∑m
j=1 tjI(Si ≤ Tj). When there is no tie

(i.e. there is not observation such that Si = Tj), we find that
µ∗ = E[U∗] =

∑
i,j sitj

2
, and

E[U∗2] = E


∑
i=k,j=l s

2
i t

2
j I(Si ≤ Tj)

+
∑
i=k,j 6=l s

2
i tjtlI(Si ≤ Tj)I(Si ≤ Tl)

+
∑
i 6=k,j=l siskt

2
j I(Si ≤ Tj)I(Sk ≤ Tj)

+
∑
i 6=k,j 6=l sisktjtlI(Si ≤ Tj)I(Sk ≤ Tl)


=

1

2

∑
i=k,j=l

s2i t
2
j +

1

3

∑
i=k,j 6=l

s2i tjtl +
1

3

∑
i 6=k,j=l

siskt
2
j

+
1

4

∑
i 6=k,j 6=l

sisktjtl, (9)

which yields

σ∗2 = E[U∗2]− E[U∗]2

=
1

4

∑
i=k,j=l

s2i t
2
j +

1

12

∑
i=k,j 6=l

s2i tjtl +
1

12

∑
i 6=k,j=l

siskt
2
j

=
1

12

 ∑
i=k,j=l

s2i t
2
j +

∑
j,l,i=k

s2i tjtl +
∑

i,k,j=l

siskt
2
j

 . (10)

Hence u∗ =
U∗ − µ∗

σ∗
∼ Normal(0, 1) (11)

One can then compare the calculated u∗ with the standard normal
distribution to test the null hypothesis H0 : u∗ = 0 versus alter-
native hypothesis H0 : u∗ 6= 0. If s1 = · · · = sn = t1 =
· · · = tm = 1, that is, if the samples are equally weighted then
µ∗ = mn

2
and σ∗2 = 1

4
(mn)+ 1

12
nm(m−1)+ 1

12
mn(n−1) =

mn(m+n+1)
12

, as expected.

3.2 Weighted Mann-Whitney-Wilcoxon Rank
Test with Ties

Now suppose the two samples have ties. Again the test statistic
is u∗ = U∗−µ∗

σ∗ . Easily, the estimation µ∗ keeps the same. We
derive σ∗2 as follows.
For distinct i, j, and l, obviously
1 = P (Si < Tj < Tl) + P (Si < Tl < Tj) + P (Tj < Si <
Tl) + P (Tj < Tl < Si) + P (Tl < Si < Tj) + P (Tl < Tj <
Si) + P (Si < Tj = Tl) + P (Si > Tj = Tl) + P (Tj < Si =
Tl)+P (Tj > Si = Tl)+P (Tl < Si = Tj)+P (Tl > Si = Tj),
and
P (Si < Tj < Tl) = P (Si < Tl < Tj) = P (Tj < Si <
Tl) = P (Tj < Tl < Si) = P (Tl < Si < Tj) = P (Tl < Tj <
Si), P (Si < Tj = Tl) = P (Si > Tj = Tl) = P (Tj < Si =
Tl) = P (Tj > Si = Tl) = P (Tl < Si = Tj) = P (Tl > Si =



Tj).

Hence U∗2 =
∑

i=k,j=l

s2i t
2
j

[
I(Si < Tj) +

1

4
I(Si = Tj)

]

+
∑

i=k,j 6=l
s2i tjtl[I(Si < Tj)I(Si < Tl) +

1

4
I(Si = Tj)I(Si = Tl)

+
1

2
I(Si < Tj)I(Si = Tl) +

1

2
I(Si = Tj)I(Si < Tl)]

+
∑

i 6=k,j=l
siskt

2
j [I(Si < Tj)I(Sk < Tj) +

1

4
I(Si = Tj)I(Sk = Tj)

+
1

2
I(Si < Tj)I(Sk = Tj) + +

1

2
I(Si = Tj)I(Sk < Tj)]

+
∑

i 6=k,j 6=l
sisktjtl

[
I(Si < Tj) +

1

2
I(Si = Tj)

]
[
I(Sk < Tl) +

1

2
I(Sk = Tl)

]
.

Thus E[U∗2] =
1

2

∑
i=k,j=l

s2i t
2
j +

1

3

∑
i=k,j 6=l

s2i tjtl +
1

3

∑
i6=k,j=l

siskt
2
j

+
1

4

∑
i 6=k,j 6=l

sisktjtl −
1

4

∑
i=k,j=l

s2i t
2
jP (Si = Tj)

−
1

12

∑
i=k,j 6=l

s2i tjtlP (Si = Tj = Tl)

−
1

12

∑
i 6=k,j=l

siskt
2
jP (Si = Sk = Tj)

So σ∗2 = E[U∗2]− E[U∗]2

=
1

12

 ∑
i=k,j=l

s2i t
2
j +

∑
j,l,i=k

s2i tjtl +
∑

i,k,j=l

siskt
2
j


−

1

12


∑
i=k,j=l s

2
i t

2
jP (Si = Tj)

−
∑
i=k,j,l s

2
i tjtlP (Si = Tj = Tl)

−
∑
i,k,j=l siskt

2
jP (Si = Sk = Tj)



3.3 Weighted Mann-Whitney-Wilcoxon Rank
Test with IPW Weights

Again suppose each of the users are assigned weight wi accord-
ing to IPW or IPW the TTE estimator. For each of the feature m
(indicated by xim for person i), when there is no ties, the test statis-
tic is calculated as u∗ = U∗−µ∗

σ∗ ∼ Normal(0, 1), where

U∗ =
N∑
i=1

wi

N∑
j=1

wjI(xim < xjm)zi(1− zj);

µ∗ = E[U∗] =
∑
i,j wiwjzi(1− zj

2
;

σ∗2 =
1

12

[∑
i,j

s2i s
2
jzi(1− zj) +

∑
i,j,l

s2i tjtlzi(1− zj)(1− zl)

+
∑
i,k,j

siskt
2
jzizk(1− zj)

]
.

When there are ties, σ∗2 is estimated as

σ∗2 =
1

12

[∑
i,j

w2
iw

2
j zi(1− zj) +

∑
i,j,l

w2
iwjwlzi(1− zj)(1− zl)

+
∑
i,k,j

wiwkw
2
j zizk(1− zj)

]
−

1

12

[∑
i,j

w2
iw

2
j zi(1− zj)P (xim = xjm)

+
∑
i,j,l

w2
iwjwlP (xim = xjm = xlm)zi(1− zj)(1− zl)

+
∑
i,k,j

wiwkw
2
jP (xim = xkm = xjm)zizk(1− zj)

]
,

The reduction of the absolute value of test statistic u∗ after IPW
indicates the balancing effect of the weighting, and the results with
real campaigns are shown in Section 4.2.

3.4 Simulation
For a set of 20000 users, we repeatedly generate heavy-tail dis-

tributed features with exponential normal distribution. Since the
features are generated with continuous distribution, we utilize the
rank test with no tie in this simulation. For each of the generated
features, we further generate the propensity of exposure and suc-
cess probability with GBDT, and hence the exposure and success
indicators. We assume no causal effect between the exposure in-
dicator and success rates. The simulated datasets are fitted with
the proposed method in Section 2, and the covariate balancing are
checked with both the standard mean difference method and the
proposed weighted rank test.

First we verify that the propensity weighting with GBDT bal-
ances the control and exposed groups. We construct the histogram
of naive amplifier and the adjusted amplifier in Figure 3 as in Sec-
tion 2. While the naive estimator is significantly larger than 1, the
weighted estimator are centered at 1 with symmetric shape. It is
apparent that the weighting successfully captures the biases of the
user features.
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Figure 3: Exposure Effect Estimation for Simulated Datasets

In such cases, the weighted features of the control and exposed
groups are supposed to be balanced. However as we stated before,
the standard mean difference test is vulnerable with heavy-tail dis-
tribution. We computed the test statistics of the standard mean dif-
ference test for each feature, whose absolute value range from 0.28
to 3.67. Setting the significance level of the hypothesis test to be
0.05 and hence the cut-off value of the test statistics to be 2, 30% of
the feature differences are tested to be significantly different than
0. With the proposed rank test, the absolute value of the mean test
statistics range from 0.43 to 1.96. Under 0.05 significance level,
all of the features pass the rank test. The simulation shows that our
rank test is robust when the distribution of user features are heavily
skewed, while the conversional test fails to capture the balancing
effect of IPW.



We also use the simulated dataset to prove that directly fitting a
model with features and exposure indicator is not a sound approach.
We fit a logistic regression model and a GBDT model for the simu-
lated success indicator with features and exposure indicators. In the
logistic regression model, the coefficient of the exposure indicator
has a p-value nearly 0. In the GBDT model, the exposure indicator
shows substantial influence. Both of the models mistakenly ‘detect’
the ad effect on irrelevant conversion, which should not exist.

4. APPLICATION: AD EFFECTIVENESS
ASSESSMENT WITH LIVE CAM-
PAIGNS

In this section we describe three real business use cases, and
summarize the results of the three dimensions of ad effectiveness.
In all the cases, we collect user-level features, including website
visitation, ad exposure, demographic information, market interest,
etc., repeatedly on a daily basis. 4 We address the three dimensions
of ad effectiveness (uplift, synergy, and audience pool expansion),
and show that our framework provides a unified pipeline to produce
robust estimator of the ad effectiveness, controlling for variations in
user features. We first demonstrate the effectiveness measurement
of the campaigns corresponding to uplift, synergy, and audience
pool expansion respectively in Section 4.1. The we report the rank
test result in Section 4.2.

4.1 Three-Dimensional Assessment of Cam-
paigns

4.1.1 Uplift
We implement the methodology to measure the uplift effect of

online ads in two business cases.
The first case analyzes a marketing campaign of a major Internet

provider company with only banner ads. We measure the effective-
ness of the banner ads comparing to no ad exposure. The success
metric is online quotes. The exposed group is defined as the users
who were exposed to the banner ads, while the control group sub-
jects were not exposed to ads. The dataset, contains about 18.7 mil-
lion users, with merely 0.3 million exposed user and 1.9 thousands
conversions. This case involves not only sparse successes, but also
relatively sparse exposed observations. Hence the subsampling-
backscaling strategy includes importance sampling with large sam-
pling rates for the exposed users and converters.

The second case analyzes a marketing campaign of a phone sys-
tem with only banner ads. We measure the effectiveness of the
banner ads comparing to no ad exposure. There are about 0.2M
exposed users and 1.2M control users, with 2K converters.

For the Internet provider company campaign, the naive amplifier
(as in Equation 4) summarized from the whole dataset is 2.52. With
our proposed framework, we reach a population level TTE ampli-
fier 1.751, i.e. the ad lift the conversion rate by 75.1%. The col-
lected amplifier estimations from each chunk have standard devia-
tion 0.137, which suggest small variation in the results for different
sub-datasets. The histogram (Figure 4) of the subsample amplifiers
shows good robustness of the results. It also shows symmetry and
uni-mode, which suggests that the average of the amplifiers from
each chunk is a good representation of the amplifier of the popula-
tion.

For the phone system company campaign, the naive amplifier is
0.51, and the population level TTE amplifier is 1.27. The raw data
4The reported dataset and results are deliberately incomplete and
subject to anonymization, and thus do not necessarily reflect the
real portfolio at any particular time.

imply negative uplift effect of the banner ads, while after correcting
the biases in the user features of the control and exposed groups, the
effect is positive, i.e. the ad lift the conversion rate by 27%. The
histogram is similar as the case 2.

In the Internet provider company campaign case, the adjusted
amplifier shows dramatic decrease; while in the phone system com-
pany campaign case, the adjusted amplifier increases. We utilize
these two cases to illustrate our novel interpretation of the result in
Section 5.

4.1.2 Synergy
We implement the methodology to measure the joint effect of

two advertising strategies on a marketing campaign of a major auto
insurance company. The two strategies are a website takeover and
a direct response banner. We measure the effectiveness of the web-
site takeover on top of the direct response banner. The exposed
group is defined as the users who were exposed to both the web-
site takeover and the banner ads, while the control group subjects
were only exposed to the banner ads. The auto insurance company
dataset contains approximately 2.8 million users with 11.7 thou-
sand converters.

The naive amplifier is 0.94, and the estimated TTE amplifier is
1.184, i.e. the webpage takeover lift the conversion rate by 18.4%
on top of the direct response banner ad. The result is shown in the
histogram Figure 5. This shows that naive amplifier underestimates
the amplification effect of the two advertising strategies, but in fact,
users who were exposed to both strategies are 1.184 times more
likely to convert.

4.1.3 Audience Pool Expansion
We again consider the marketing campaign of the auto insur-

ance company as in Section 4.1.2, but measure the reach exten-
sion effect of the upper-funnel placement (website takeover) on the
lower-funnel placement (direct response). We measure how much
more likely the users migrate into interest segments that can then be
targeted by the direct response campaign after exposed to website
takeover campaign. The success metric is the indicator represent-
ing whether or not each user is included in the targeting pool of the
lower-funnel placement. The exposure is defined as exposure to
the upper-funnel ad impressions. The naive amplifier is 1.80, and
the estimated TTE amplifier is 1.23. Thus, the webpage takeover
brings 23% more audience to the direct response banner ad. The
result is shown in the histogram Figure 6.

4.2 Check the Balancing Effect of Propensity-
Based Weighting

The check the balancing effect of the weighting, we implement
our novel rank test and the result shows significant reduction of test
statistics after weighting. The percentage reduction ranges from
73.0% to 92.3%. The result verifies that the weighting significantly
balanced the relevant user features. 5

To give an visualized example of the balancing effect of the IPW
on user characteristics, we summarize the total network activity
before and after the weighting in the Internet provider campaign
in Figure 7. The figure shows significant improvement in the bal-
ance of network activity. Similar phenomena are observed for other
important features, such as auto purchase intention in the auto in-
surance dataset. This is consistent with the rank test results.

5The conventional standardized mean test show the percentage re-
duction ranges from 50.0% to 77.6%. However we have shown
that the proposed rank test yields more accurate results with adver-
tising data, where the user characteristics are usually skewed and
heavy-tailed.
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Figure 7: Network Activities Before (a, b for control and exposed groups
respectively) and After (c, d for control and exposed groups respectively)
the Weighting

5. INTERPRETATION: UNDERSTANDING
THE ADJUSTED AMPLIFIER

In all the marketing campaigns in Section 4, the analysis reveals
positive ad impact on uplift, synergy, and audience pool expansion
aspect. However, the change of amplifier after causal inference
can be positive or negative, which requires further interpretation
from business point of view. In this section we compare of the raw
amplifier and adjusted amplifier after causal inference. Note that
the causal inference model ‘corrects’ the amplifier by eliminating
the effect of user features, and hence the change of the amplifier
reveals the nature of the ad placement: either it is doing ‘smart
cheating’ and reaching users who would convert even without the
ad, or reaching users who would not convert without the ad. There
are two possible scenarios:

1) The first scenario is that the amplifier decreases after adjust-
ment. This means the confounding effect of user features inflates
the raw amplifier, and hence the exposed group is doing ‘smart
cheating’, namely, the exposed group contains more users who are
likely to convert even without ad exposure.

In the Internet provider company campaign case in Section 4.1.1,
the amplifier shrinks after adjustment. To further investigate the
users in the control and exposed groups, we calculate the success

odds ratio of both groups along with the probability belonging to
the corresponding group, as in Figure 8. The increasing trend in
Figure 8(b) shows that the exposed group tends to contain users
who are more likely to convert, and the control group the oppo-
site. Hence the placement is doing ‘smart cheating’, and the causal
inference eliminates such effect by shrinking the amplifier, as ex-
pected.

2) The second scenario is that the amplifier is enlarged after ad-
justment. This means that the confounding effect of user features
deflates the raw amplifier, and hence the exposed group is reaching
‘hard users’, namely, the exposed group contains more users who
are less likely to convert without ad exposure.

In the phone system company campaign case in Section 4.1.1,
the amplifier is about twice after adjustment. We draw the success
odds ratio of both groups along with the probability belonging to
the corresponding group as in Figure 9. The declining trend in
Figure 9(b) shows that the exposed group tends to include users
who are less likely to convert, i.e. ‘hard users’, and the control
group has more ’easy users’. Hence the causal inference eliminates
such effect, and brings back the true impact of ads.
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Figure 8: Success Odds along with Probability Belonging to Corresponding
Group, Internet Provider

6. CONCLUSIONS
In this paper, we construct a unified framework to measure ad

effectiveness from observational data. Our solution incorporates
IPW estimator for the causal inference? a novel robust rank test for
model validation. We also investigate the change of amplifier be-
fore and after IPW adjustment, to find the ‘smart cheating’ in ads.
In the multi-treatment framework, the validation and smart cheat-
ing detection approaches proposed in this paper still holds. One
can calculate the success odds ratio of each group along with the
probability belonging to the corresponding group, and find out the
ad strategy that tends to include user who are more like to convert,
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Figure 9: Success Odds along with Probability Belonging to Corresponding
Group, Phone System

i.e., doing ‘smarting cheating’. The validation method in Section
3 may also be generalized accordingly, to conduct simultaneous
comparison of the features of users receiving different treatments.

The framework provides a thorough solution to the ad effective-
ness measurement, including uplift, synergy, and audience pool ex-
pansion effect, which is crucial for online advertising. Also, this
paper focuses on measuring the effectiveness of online ads, but
the framework is readily applicable to measure the effectiveness of
other kinds of treatments on various user metrics, for example the
impact of different strategies on user engagement metrics. It may
serve as a supplement or substitute to experiments, in the areas such
as recommender systems and web search, where controlled experi-
ments are extensively used for comparing algorithms and models.
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