Multi-armed Bandits on the Web

Successes, Lessons and Challenges

Lihong Li

Microsoft Research 08/24/2014

2nd Workshop on User Engagement Optimization (KDD'14)

BIG DATA

correlation

Statistics, NL, DM, ...

Big Trap

KNOWLEDGE

Correlation ≠ Causation

ACTION

Somewhat Toy-ish Example

 Studies show... people who search their names in search engines tend to have higher income

Decision making:

WWII Example

- Statistics collected during WWII...
 - Bullet holes on bomber planes that came back from mission
- Decision making:
 - Where to armor?
 - Abraham Wald: the opposite!

Machine Learning for Decision Making

Outline

- Multi-armed Bandits Algorithms
- Offline Evaluation
- Concluding Remarks

Contextual Bandit [Barto & co'85, Langford & co'08]

Generalizes classic K-armed bandits (without context)
Stochastic vs. adversarial

Motivating Applications

- Clinical trials
- Resource allocation
- Queuing & scheduling
- ...
- Web (more recently)
 - Recommendation
 - Advertising
 - Search

Case 1: Personalized News Recommendation

www.yahoo.com

 A_t : available articles at time t \mathbf{x}_t : user features (age, gender, interests, ...) a_t : the displayed article at time t

 $r_{t,a}$: 1 for click, 0 for no - click

Average reward is click-through rate (CTR)

Standard Multi-armed Bandit [R'52, LR'85]

No contextual information is available \rightarrow potentially lower rewards

 CTR_1

CTR₂

 ϵ -greedy:

Choose article $\begin{cases} \arg\max \hat{\mu}_a \text{, with prob. } 1 - \epsilon \\ \operatorname{random, with prob. } \epsilon \end{cases}$

CTR₃

UCB1 (Upper Confidence Bound) [ACF'02] Choose article $\arg\max_{a} \left\{ \hat{\mu}_{a} + \frac{\alpha}{\sqrt{N_{a}}} \right\}$

Exploration bonus that decays over time

LinUCB: UCB for Linear Models [LCLS'10]

- Linear model assumption: $\mathbf{E}[r_{t,a}|\mathbf{x}_t] = \mathbf{x}_t^\mathsf{T}\theta_a$
- Standard least-squares ridge regression

$$\hat{\theta}_a = (\mathbf{D}_a^T \mathbf{D}_a + \mathbf{I})^{-1} \mathbf{D}_a^T \mathbf{c}_a, \text{ where } \mathbf{D}_a = \begin{bmatrix} -\mathbf{x}_{t_1}^T - \\ -\mathbf{x}_{t_2}^T - \\ \vdots \end{bmatrix} \text{ and } \mathbf{c}_a = \begin{bmatrix} r_{t_1} \\ r_{t_2} \\ \vdots \end{bmatrix}$$

Quantifying prediction uncertainty: with high probability,

$$\left| \mathbf{x}^T \hat{\theta}_a - \mathbf{x}^T \theta_a \right| \le \alpha \sqrt{\mathbf{x}^T \mathbf{A}_a^{-1} \mathbf{x}}$$
Prediction error

Measures how similar x is to previous contexts

LinUCB: Optimism in the Face of Uncertainty

A variant of LinUCB: $O(\sqrt{KdT})$ with matching lower bound [CLRS'11]

LinRel [Auer 2002] is similarly motivated but more complicated.

LinUCB for News Recommendation [LCLS'10]

- UCB-type algorithms do better than ε -greedy counterparts
- CTR improved significantly when features/contexts are considered

LinUCB Variants

- Hybrid linear models for multi-task learning [<u>LCLS'10</u>]
 - Beneficial when data is sparse
- Generalized linear model [LCLMW'12]
 - Greater flexibility of modeling rewards
 - Linear regression, logistic regression, probit regression, ...
- Sparse linear model [Abbasi-Yadkori & co'12]
 - Lower regret when $\{\theta_a\}$ are sparse

Case 2: Online Advertising

Must-See Attractions · Old Quebec · Accommodation · Tours · Where to Stay

Quebec City - Wikipedia, the free encyclopedia

Reward: revenue

Limitation of UCB in Online Advertising

- How to take advantage of prior information to avoid unnecessary exploration
- How to handle long delay of reward after taking an action
- How to enable complex models

Thompson Sampling

- Old heuristic: "probability matching" (1933)
 - $Pr(a|\mathbf{x}) = Pr(a \text{ is optimal for } \mathbf{x} \mid prior, data)$
- Highly effective in practice [Scott'10] [CL'11]
- Inspired lots of theoretical study in last 2 years
 - Non-contextual bandits [Agrawal, Goyal, Kaufmann, ...]
 - Linear bandit [Agrawal & Goyal'13]
 - Generalized Thompson Sampling [L'13]
 - Bayes risk analyses [Russo & Van Roy]

Thompson Sampling for Advertising [CL'12]

8/24/2014 Lihong Li 19

Model-agnostic Algorithms

- EXP4 [Auer et al'95] [BL<u>L</u>RS'11]
 - Optimal $O(\sqrt{T})$ regret bound
 - Works even when contexts and rewards are generated by adversarial
 - Computationally expensive in general
- ILOVETOCONBANDITS [AHKLLS'14]
 - Optimal $O(\sqrt{T})$ regret bound
 - Computationally efficient
 - Promising empirical results

Outline

- Multi-armed Bandits Algorithms
- Offline Evaluation
- Concluding Remarks

Policy Evaluation

Assume stochastic bandit: $\mathbf{x} \sim \nu$, $r_a \sim \nu$ ($\cdot | \mathbf{x}, a$)

Given a policy $\pi: \mathbf{X} \to a$, want to estimate its value: $V(\pi) = \mathbf{E}_{\mathbf{v}}[r_{\pi(\mathbf{X})}]$

Online evaluation

- Run π on live users and average observed rewards (as in A/B tests)
- Reliable but expensive

Offline evaluation

- Estimate $V(\pi)$ from historical data set $D = \{(\mathbf{x}, a, r_a)\}$
- Fast and cheap (e.g., benchmark data sets for supervised learning)
- Counterfactuality of rewards: no information to evaluate π if $\pi(x) \neq a$

Common Approach in Practice

In contrast, our approach

- avoids explicit user modeling → simple
- gives unbiased evaluation results → reliable

Our Approach: Unbiased Offline Evaluation

Randomized data collection: at step t,

- Observe current context x
- Randomly chooses $a \in A$ according to $(p_1, p_2, ..., p_K)$ and receives r_a End result: "exploration data" $D = \{(\mathbf{x}, a, p_a, r_a)\}$

Key properties:

- Unbiasedness: $\mathbf{E}_D\left[\frac{1}{|D|}\sum_{(\mathbf{X},a,p_a,r_a)\in D}\frac{r_a\cdot\mathbf{1}(\pi(\mathbf{X})=a)}{p_a}\right]=V(\pi)$
- Estimation error = $O\left(\frac{1}{\sqrt{|D|}}\right)$

Related to causal inference (Neyman-Rubin) and off-policy learning [Precup & co]

Case 1: News Recommendation [LCLW'11]

- Experiments run in 2009
- ullet Fixed an article-selection policy π

- Run π on live users to measure online click rate
 - The ground truth
- Use exploration data to evaluate π 's click rate
 - The offline estimate

Unbiasedness

8/24/2014

Estimation Error

8/24/2014

Case 2: Spelling Correction of Bing

What Speller does:

- Corrects typos
- May produce multiple candidates (with search results blended later)

Objective:

To optimize pre-defined click metrics

Accuracy of Offline Evaluator [LCKG'14]

Position-specific click-through rate

1 2 3 4 5 6 7 8 Position A Online Offline

Daily click-through rate

8/24/2014 Lihong Li 29

Quantifying Uncertainty in Offline Evaluation

30

Case 3: Web Search Ranking

contextual bandit

37,000 RESULTS

Any time ▼

Multi-armed bandit - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Contextual_bandit_algorithm *

In probability theory, the multi-armed **bandit** problem (sometimes called the K - or N - armed **bandit** problem) is the problem a gambler faces at a row of slot machines ... Empirical motivation · The multi-armed ... · Variations · **Bandit** strategies

Contextual Bandits « Machine Learning (Theory)

hunch.net/?p=298 ▼

With rich **contextual** information my first instinct is to restructure the presentation strategy to get back into a supervised learning framework.

PDFI A Contextual-Bandit Approach to Personalized News ...

www.research.rutgers.edu/~lihong/pub/Li10Contextual.pdf

A **Contextual-Bandit** Approach to Personalized News Article Recommendation Lihong Li†, WeiChu†, †Yahoo! Labs lihong,chuwei@yahoo-inc.com John Langford‡

[PDF] Contextual Multi-Armed Bandits - Department of ...

www.cs.toronto.edu/~tl/papers/context-aistats.pdf

Search as a bandit:

- Context: query
- Action: ranked list
- Reward: search success-or-not

Challenges:

- Exponentially many actions
 - → large estimation variance
- Collecting enough randomized data can be too expensive

Trading off Bias and Variance [LKZ'14]

- Use natural exploration (uncontrolled diversity) of Bing to simulate randomized data collection
 - Nearly unbiased [SL<u>L</u>K'11]
 - \triangleright Can use unlimited amount of data \rightarrow lower variance
- Use approximate matching of actions
 - ➤ May introduce some amount of bias
 - Can dramatically reduce variance

Predicting Success of New Ranking Function

8/24/2014 Lihong Li 33

Metric Correlation based on Query Segments

34

8/24/2014

Advanced Offline Evaluation Techniques

- Doubly robust estimation [DL<u>L</u>'11]
- Extends to evaluate learning algorithms (e.g., LinUCB) [DEL<u>L</u>'12]
 - With adaptive importance sampling

Increasingly popular at industrial leaders.

Outline

- Multi-armed Bandits Algorithms
- Offline Evaluation
- Concluding Remarks

Conclusions

- Contextual bandits as a natural and versatile model
 - Better decision making → causality
 - Rich information enables better user understanding & decision making
- Additional challenges not seen in traditional bandits
 - Delayed rewards, decision making with constraints, ...
 - Dueling bandit [Yue & co]
 - Gang of bandits [Cesa-bianchi & co]
 - ...
- Large amount of data makes offline evaluation feasible
 - Can validate offline evaluation precision by experiments
 - What is the optimal estimator? [LMS'14]
- Next big step: full RL (non-myopic decision making)