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ABSTRACT
In this paper, we present a multitask learning method for
predicting the resolution status of the issues expressed in
social media conversations among customer-care agents and
social media users, along with the nature of dialogues of
those conversations. Our method extends beyond social
media conversation analysis, and is naturally applicable to
general multiple sequence labeling tasks where each example
sequence has multiple label sequences. Our method learns
multiple models, one model for each task, i.e., issue sta-
tus prediction task and dialogue act prediction task. Each
model computes the joint probability of both label sequences
(dialogue act and issues status) given the example sequence,
i.e., conversation among customers and agents. Such mul-
tiple models are learned simultaneously by facilitating the
learning transfer among models through explicit parameter
sharing. We experiment the proposed method on real so-
cial media conversations dataset collected from Twitter as
well as on a publicly available NLP dataset, and show that
our method outperforms the state-of-the-art method. In ad-
dition, we illustrate how the issue status and dialogue act
prediction tasks can be an integral part of socially aware
customer care engagement system.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures
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multitask learning, multilabel learning, label dependency

1. INTRODUCTION
Over the last few years, explosive growth of users’ activ-

ity on popular social media channels such as Twitter, Face-
book, etc., has given various product/service providers op-
portunity to identify and engage with their customer-base
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in a proactive manner. A recent survey of 320 active social
media users [7] reveals that three quarters ( 74%) of users
choose brands/services based upon other customers’ expe-
rience shared online whereas 38% of users engage actively
with brands’ customer service. Evidently, the social media
presence of active users provides opportunities to transform
traditional customer relationship management(CRM) sys-
tems into their socially aware counterparts, also termed as
social-CRM. Through these social-CRM systems, customer
service agents can engage in online conversations with cus-
tomers via social media channels, address their concerns,
know their views about a certain product, or even market
new products. In a social-CRM system, customer-agent en-
gagement is of asynchronous nature and often takes place
among multiple customers and multiple agents (many-to-
many), which makes it hard for these systems to keep track
of the progress of these conversations, e.g., for engaging so-
cial media users for customer care activities for their issue
resolution and service/product feedback analysis. Since one
agent is usually involved with several customers at different
time instances, the agent needs to come back to only those
issues which system has identified to be requiring further
attention. In addition to identifying these unresolved issues,
the Social-CRM system should also keep track of the resolved
issues along with their solutions in order to provide this in-
formation to other agents for more effective issue resolution
in future. Given the large number of customers and their
data, it is important to automate the process of detecting
resolved and unresolved issues, based upon the social media
conversation between agent and the user. We focus on the
problem of automatically predicting the status of an issue,
referred as issue status prediction problem.

Often the nature of dialogues (also referred as dialogue
act [29]) between agent and user can indicate the current
status of the issue. For example, the nature of dialogue
can be a simple greeting message, an acknowledgement, or
a complaint followed by acknowledgement and answer that
accompany the technically involved solution present in the
conversation. In addition, nature of dialogues also helps
CRM solutions to determine the effectiveness of agents and
of her conversational style (see Section 6). Therefore, we
also focus on this problem of predicting dialogue acts of the
conversations between a customer and agent(s), referred as
dialogue act prediction problem. For both of these prob-
lems i.e. issues status prediction and dialogue act predic-
tion, there exist a correlation between them. An example of
a conversation showing the correlation between current issue
status and its dialogues is given in Table 1. From this ta-



Table 1: Example of a conversation between a customer and customer-care agent. Each conversation text (column 3) has two
labels associated with it (column 1 and 2).

Dialogue Act Issue Status Text
COMPLAINT OPEN this mobile is making my life hard

REQEST OPEN @user_x is there anything we in the social media team can assist you with?

COMPLAINT OPEN so i can’t make or receive calls & i can’t send texts or receive them.

REQUEST OPEN @user_x what is your zip code ?

ANNOUNCEMENT OPEN we can check for outages for you.

ANSWER SOLVED @user_x your experiencing tower outage.

ANSWER SOLVED it is estimated to be cleared by the 21st of february.

ble, we see that customers typically have complaint in their
tone while describing their issue with a certain product. In-
cidentally, issues status open tends to have correlation with
dialogue class complaint. Similarly, correlations may exist
between dialogue act answer and issue status closed. A
formal list of issue status types and dialogue act types is
given in Tables 3 and 2. Such correlations among labels
are not specific to customer-care domain but they have also
been exhibited in other domains such as natural language
processing (NLP) where words in a sentence can be labeled
with their Part of Speech (POS) tags as well as NP chunks
[32]. Since the underlying sentence of both POS tagging
and NP chunking problems is same, both problems can be
cast as one single problem —multilabel sequence labeling
problem— where an example sequence (i.e. sentence) has
multiple labels sequences (i.e., POS tags and NP chunks).

Similar to multiple labels sequencing problem in NLP do-
main, both issue-status and dialogue act prediction problems
can be formulated as sequence labeling problems because of
the inherent sequential structure in the conversation. Su-
pervised sequence classification methods such as conditional
random fields [20] provide a natural framework to solve these
problems [19, 25, 8]. One can build two separate classifi-
cation models, one for each problem, either assuming that
these two problems are unrelated, or ignoring any related-
ness structure. However, as we show in the experiment sec-
tion, it is more reasonable to exploit the correlation among
the issue status and dialogue act label sequences. If we de-
fine a task as learning from pairs of example sequence and
its corresponding label sequence, then we can cast learn-
ing multiple label sequences as multitask sequence labeling
learning problem[31].

In machine learning, Multitask Learning(MTL) provides
a mechanism to learn various related tasks simultaneously
such that learning from one task can benefit other task
and vice-versa. Often in MTL, multiple tasks are learned
together by sharing their parameters explicitly either in a
Bayesian way [21, 34, 33] or in a non-Bayesian way [6, 24,
16]. In MTL, most of the work has focused on classifica-
tion or regression problems, with very little work on se-
quence labeling problem. In addition, most of the MTL
methods are not especially designed for our multitask set-
ting, i.e., an example sequence has multiple label sequences.
Any method designed especially for multiple label sequences
setting should exploit the dependencies among labels. Fur-
thermore, to the best of our knowledge, we are not aware of
any MTL method that focuses on dialogue-act/issue-status
classification tasks. Most of the dialogue act classification
methods that treat a conversation as a sequence and employ
structured prediction methods such as [29, 3, 11, 22, 17, 25,

8, 19], focus on the feature engineering aspect of the prob-
lem rather than the underlying algorithmic framework. One
closest approach to ours is factorial CRF [31], where authors
exploits the label dependencies among multiple tasks implic-
itly. In contrast, our proposed method exploits the correla-
tions present in multiple label sequences explicitly that not
only improves upon the factorial CRF but also leads to a
flexible framework for multitask sequence learning.

In this work, we extend the MTL setting to the general se-
quence labeling problem with multiple label sequences, and
propose a novel method for learning from multiple sequence
labeling tasks simultaneously. Our method —based on con-
ditional random fields (CRFs)— not only exploits label de-
pendencies but also learns multiple tasks simultaneously by
explicitly sharing parameters. In our method, we learn one
model for each task 1. Each task has two factors (as opposed
to one factor in CRFs), one factor corresponding to all la-
bels ( we call it label dependency factor), and other factor
corresponding to task-specific primary label (we call it task-
specific factor). Since the factor corresponding to all labels
appear in all tasks, we facilitate the learning transfer among
tasks by keeping the parameters corresponding to this factor
same across all tasks. We show through a variety of exper-
iments on datasets from two different domains that such a
model outperforms the state-of-the-art [31] method. Note
that learning from multiple labels is typically done in two
ways: (1) build one single model that incorporates factors
of all label sequences and example sequence, i.e., complete
dependency and no independent learning (2) build multi-
ple CRF-like independent models with no learning transfer
among models, i.e., complete independent learning, and no
dependency among labels. the proposed method is a mid-
dle ground between these two extremes, and provides the
best of both worlds. Because of a task-specific factor, it al-
lows model to learn independently, and at the same time,
because of label-dependency factor, it allows learning to be
transferred among all tasks.

In addition to the parameter sharing framework, we also
propose a variation where label dependency factor is further
broken into two parts, one that contain information specific
to the task and other information common to all tasks. This
variation allows one to control the amount of transfer among
multiple tasks. Experimental results of this variation show
further improvements.
Our contributions: (1) we propose a novel method for se-

1A task definition is expanded to include all labels. A task,
for our method, is defined as learning from tuples of example
sequence and its label sequences. Each task has one primary
label sequence, and other label sequences are considered sec-
ondary.



quence labeling problem for multiple labels sequences. (2)
We show the application of our method on real customer
conversation dataset from social-CRM domain and standard
CoNLL dataset[32], and show improvements upto 6% over
the baseline [31]. (3) We propose a variation of this model
that adds flexibility in terms of allowing one to control the
amount of transfer among tasks. (4) The proposed method
is naturally applicable to semi-supervised setting. It pro-
vides multiple models that can be used in co-training to
incorporate unlabeled examples.

2. BACKGROUND AND PROBLEM DESCRIP-
TION

We extend the mathematical framework of conditional
random field (CRF) [20] to support sequence labeling with
multiple labels. Before describing our approach in detail, we
first setup mathematical notations and summarize the CRF
model. CRFs are undirected graphical models that model
the conditional probability of a label sequence given an ob-
served example sequence. Let G be an undirected graphical
model over random variables x and y which represents se-
quence of random variables, i.e. x = (x1, x2, . . . xT ) is the
sequence of observed entities (e.g. words in a sentence) that
we want to label with y = (y1, y2, . . . yT ). (x,y) together
constitute an example-label pair. In the undirected graph
G, let C = {C1, C2 . . .} be the set of cliques contained in the
graph G where Ci = {yc,xc}, yc ⊂ y and xc ⊂ x. Given
such a graph defined on example-label pair, the conditional
probability of a labeled sequence y given an observed exam-
ple sequence x can be written as:

p(y|x, θ) =
1

Z(x)

∏
c∈C

Φ(yc,xc|θ), (1)

where Φ is the potential function defined over a clique, and
is the function of all random variables in that clique. For
example, in a specific case of linear chain CRF, these po-
tential functions are defined over cliques (xt, yt−1, yt). Here
θ is the parameter, which we include in the potential func-
tion to denote that potential functions are parametric func-
tions. Z(x) =

∑
y

∏
c∈C Φ(yc,xc|θ) is the partition function

which makes sure that the potential functions are normal-
ized, and (1) can be interpreted as probabilities. Usually
the potential functions in (1) factorize over the features of
the clique and are defined using the exponential function of
the form Φ(yc,xc|θ) = exp

(∑
k θkfk(yc,xc)

)
. Here fk are

the features functions, and θk are parameters. The feature
functions fk can be defined arbitrarily which is one of the
primary advantages of CRFs. For example, part of speech
(POS) tagging problem can be modeled as linear chain CRF,
where feature functions can be defined over words, their
characteristics, and their POS labels. In such a linear chain,
indexed with t, a clique is defined for each (yt−1, yt, xt))
combination. For such a clique, one feature function could
be a binary test: fk(yt−1, yt, xt) has value 1 if and only if
yt−1 has the label ARTICLE, yt has the label NOUN, and
the word xt begins with a capital letter. A pictorial repre-
sentation of CRF is given in Figure 1.

2.1 Multitask Sequence Labeling
In multitask sequence labeling problem, we are given mul-

tiple label sequences for each example sequence, i.e., in ad-
dition to y = (y1, y2, . . . yT ) (as defined for CRFs), we have
z = (z1, z2, . . . zT ) as another set of label sequence for x. For
simplicity, we only consider two types of label sequences,
however, it is straightforward to extend our approach to

more than two labeling sequences (see Definition 1). Thus
our training examples for the entire task become triplets of
(x,y, z). We have n such training examples, i.e., {xi,yi, zi}ni=1.
Therefore, the multiple sequence labeling problem can be
formalized as modeling conditional density p(y, z|x).

3. OUR APPROACH
In this section, we first describe a basic approach. When

modeling the joint probability in multiple label setting, it is
a standard practice to build just one model considering all
possible factors (or cliques) from example sequence and label
sequence [31, 23]. Although proven to be better that build-
ing two separate standard CRFs, this approach has many
drawbacks (see experiments). One of them is the ability to
model the tasks independently. The standard CRF though
provides this capability, they do not include the effect of
other labels; while other models, e.g., [31, 23] do not pro-
vide this capability at all – they only build one single model.
In our basic but novel approach, we begin by providing a
middle ground between these two extremes (i.e. one single
fully dependent model and two fully independent models),
where both tasks are modeled independently but at the same
time, one task draws benefit from other task through label
dependencies.

We model p(y, z|x) by considering two types of cliques
(and potential function defined on those cliques). The first
type of clique, similar to the one in linear chain CRF, con-
sists of adjacent labels in one (of any) sequence y, i.e.,
(yt−1, yt) along with current xt i.e. (yt−1, yt, xt), and the
second type of clique consists of the pair of labels (yt, zt)
along with current xt i.e. (yt, zt, xt). Here the first type of
clique provides the independence while the second type of
clique provides the benefit from other labels. As we shall
see later, such a model provides better discriminating power
than the models that consider all types of cliques [31, 23].
Given such two types of cliques and the potential functions
defined over them, the conditional probability of both label
sequences given the example sequence can be written as:

py(y, z|x, θy , ψy) =
1

Uy(x)

T∏
t=1

(
Φ(yt−1, yt, xt|θy)︸ ︷︷ ︸

task(y) factor

)
(

Φ(yt, zt, xt|ψy)︸ ︷︷ ︸
label dependency

factor

)
(2)

Similar to CRF, Uy(x) is the normalization factor. Al-
though (2) provides the probability of both the labels, i.e.,
(y, z), conditioned on observed data sequence x , there is no
clique that depends on adjacent z labels, i.e., zt, zt−1. Thus
though incorporating partial information from other label z,
the above model still focuses on the task y. So the above
model is only defined for the task y since its primary focus
is label y - because of the task y factor. Similarly we can
define a model for task z:

pz(y, z|x, θz , ψz) =
1

Uz(x)

T∏
t=1

(
Φ(zt−1, zt, xt|θz)︸ ︷︷ ︸

task(z) factor

)
(

Φ(yt, zt, xt|ψz)︸ ︷︷ ︸
label dependency

factor

)
(3)

It is to be noted in the above models that the first clique
is the task-specific clique as it only considers the label from
one task, while the second clique is the common clique as
it takes labels from both tasks. Since the second clique is



common in both models, the first clique (and label) is the
model’s defining clique (and label), and corresponds to the
task that model is built for. Also note that in the above
models each type of clique has its own parameters, i.e. task
y has its parameters θy and ψy and the task z has its own
parameters θz and ψz. Such a model where each task has
its own set of parameters, we call it unshared model. A
pictorial representation of this unshared model is shown
in Figure 2. Observe that there are two different models,
one for each task. Both models have their own factors (and
parameters).

The above models can be optimized (and inferenced) using
the standard machinery used in CRF since these models are
exactly the same as CRF except an additional clique.

yt−1 yt yt+1

xt−1 xt xt+1

Figure 1: Conditional Random Fields (CRFs)

Below we define the generalized unshared multilabel model,
i.e., there can be any number of labels with arbitrary depen-
dencies among them.

Definition 1. Let x be an observed example sequence
with y1,y2, . . .yk its multiple label sequences. Let Ct be the
set of cliques denoting the possible interactions among la-
bels at time t (i.e., interaction among labels y1,y2, . . .yk),
then, the unshared multilabel model is a set of task-specific
models where each task-specific model (for task yl) is defined
as:

pyl (y1,y2, . . . ,yk|x, θyl , ψyl ) =
1

Z(x)

( T∏
t=1

Φ(yl,t−1, yl,t, xt|θyl )
)

( T∏
t=1

∏
c∈Ct

Φ(yc, xt|ψyl )
)

(4)

3.1 Shared Models
Although more accurate than the existing methods (CRF

and factorial CRF) (see experiments), this method does not
take advantage of the multitask nature of the problem, as
both models have their own separate set of parameters, and
there is no learning transfer between these models. We
exploit the multitask nature of the problem and facilitate
learning transfer by sharing the parameters corresponding
to the common clique in both models. Sharing parameters
to facilitate learning transfer is a well-known practice in mul-
titask learning [24, 16, 4, 6, 5]. In other words, we make

ψy = ψz = ψ.

We call this formulation shared model. A pictorial repre-
sentation of this shared model is shown in Figure 2. We
emphasize in this figure that there are two separate mod-
els, with one set of factors that is common to both models.
The figure should not be confused for the graphical model
for one single model. The parameters corresponding to the
common factor are shared between both models, as opposed
to unshared model where both models have their own pa-
rameters.

Now for the clarity and follow up discussion, we write the
formulations (2) and (3) in terms of corresponding feature
functions (under shared model):

py(y, z|x, θy , ψ) =
1

Uy(x)

T∏
t=1

exp
(∑

k

(
θykfk(yt−1, yt, xt)︸ ︷︷ ︸

task(y) factor

+

ψkfk(yt, zt, xt)︸ ︷︷ ︸
label dependency

factor

))
. (5)

Here

Uy(x) =
∑
y,z

T∏
t=1

exp(
∑
k

(θykfk(yt−1, yt, xt)+ψkfk(yt, zt, xt))).

We can write a similar model for the task z. In this model,
first type of clique depends on the adjacent labels from task
z along with xt i.e. (zt, zt−1, xt) while the other type of
clique is similar to the model for task y.

pz(y, z|x, θz , ψ) =
1

Uz(x)

T∏
t=1

exp
(∑

k

(
θzkfk(zt−1, zt, xt)︸ ︷︷ ︸

task(z) factor

+

ψkfk(yt, zt, xt)︸ ︷︷ ︸
label dependency

factor

))
. (6)

Remarks: Two main points to be noted about these two
shared models are: (a) though we have two models, one
for each task, each of these models is sufficient to produce
labels for both tasks, and (b) the parameters θx, θy are
task specific while parameters ψ are common to both tasks
which facilitates learning transfer among both tasks. Since
each model can be used to produce labels for both tasks,
these two tasks can be thought as two views, and one can
use co-training with these models to build a semisupervised
model.

Definition 2. A shared multilabel model is a set of task-
specific models, where each task-specific model is defined as
in (4) but all parameters corresponding to the label-dependency
factor are same. In other words:

ψy1 = ψy2 = . . . = ψyk = ψ.

Next we construct our objective function to fit data to
these models. We take four specific approaches to define
objective function as described below.

Joint Optimization:.
We hypothesize that although each of these models are

sufficient to learn the labels for both tasks independently,
it will be advantageous to learn them simultaneously. Con-
sequently, we define a joint model that is the product of
both models2. We maximize the likelihood of the data un-
der this model, i.e., find the parameters by optimizing the
joint log likelihood. This is equivalent to minimizing the
loss on the training data. To reduce the overfitting, we de-
fine Gaussian prior with mean µ = 0 and covariance matrix

2Note that though each of these two models gives us a prob-
ability distribution over (y, z), product of these two models
is not a probability distribution. This product is taken only
to facilitate the joint learning – a practice used in MTL [24,
4, 6]. One can also think of maximizing this joint log like-
lihood as minimizing the cumulative loss of both models on
the training data which is the negative of joint log likelihood.
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zt−1 zt zt+1

xt−1 xt xt+1

yt−1 yt yt+1

zt−1 zt zt+1

xt−1 xt xt+1

yt−1 yt yt+1
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task z
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zt−1 zt zt+1

xt−1 xt xt+1

yt−1 yt yt+1

zt−1 zt zt+1

xt−1 xt xt+1

yt−1 yt yt+1

Figure 2: Graphical model representations of unshared (left) and shared (right) models. Note the common factors in the shared
(right) model, above and below the horizontal line. These factors are defined over the same random variables and share the parameters.

Σ = I/η for all parameters i.e., p(θy) ∝ exp(− η
y

2
‖θ‖2),

p(θz) ∝ exp(− η
z

2
‖θ‖2) and p(ψy) ∝ exp(− η

o

2
‖θ‖2). The log

likelihood of the data with this modeling approach can be
written as:

`(θy , θz , ψ) =
n∑
i=1

log py
(
y(i), z(i)|x(i), θy , ψ

)
+ log pz

(
y(i), z(i)|x(i), θz , ψ

)
−
ηy

2
‖θy‖2−

ηz

2
‖θz‖2−

ηo

2
‖ψ‖2 (7)

The derivatives of the above joint log likelihood with re-
spect to θy (similar for θz) and ψ are:

∂(`)

∂θyk
=
∑
i

∑
t

fk(y
(i)
t , y

(i)
t−1, x

(i)
t )

−
∑
i

∑
t

∑
y,y′

py(y, y′|x(i), θy , ψ)fk(y, y′, x
(i)
t )− ηyθyk

(8)

∂(`)

∂ψk
=
∑
i

∑
t

2fk(y
(i)
t , z

(i)
t , x

(i)
t )

−
∑
i

∑
t

∑
y,z

py(y, z|x(i), θy , ψ)fk(y, z, x
(i)
t )

−
∑
i

∑
t

∑
y,z

pz(y, z|x(i), θz , ψ)fk(y, z, x
(i)
t )− ηoψ

(9)

where, the first term is simply the feature value while
the second (and third) terms are the expectations of the
feature values over all possible label combinations, as is
standard in log-linear models [9, 20]. Observe that com-
puting these expectations require us to compute marginal
probabilities, i.e., py(y, y′|x(i), θy, ψ), py(y, z|x(i), θy, ψ) and

pz(y, z|x(i), θz, ψ).
Note that the joint likelihood function `(θy, θz, ψ) is con-

vex in all its parameters i.e. θy, θz and ψ and hence can
be optimized by a number of techniques. In our imple-
mentation, we use L-BFGS which has previous shown to
outperform other techniques [28]. For inferences, we need
two kind of inferences, one for computing marginals, e.g.,

py(y, y′|x(i), θy, ψ) (sum-inference) and other for computing
the most likely label i.e., arg maxy,z p(y, z|x) (max-inference).
We use belief propagation for sun-inferences and Viterbi for
max-inferences.

The above described model has some resemblance with the
factorial CRF model[31] (described in Section 4) with the
important difference that the factorial CRF has one single
model which is jointly optimized for all tasks and, therefore,
has no explicit parameter sharing. On the other hand, we
break the factorial CRF in two separate tasks and then ex-
plicitly share the parameters among both tasks. This differ-
ence is important because breaking the one model into two
models increases their discriminative power (the normaliza-
tion factor is also broken). Such a separate framework allows
the transfer of learning through parameter sharing but at the
same time, leaves enough room for independent learning.
This independent learning is important as you shall see in
the experiments, in some cases, unshared model performs
better than the factorial CRF because in those cases inde-
pendent learning is more important that the partial sharing
as done in factorial CRF. For mathematical details on this,
refer to Appendix A.

3.2 Variance Models
The primary purpose of multitask learning framework is

to be able to transfer learning among multiple tasks in a
way that each model is able to model its own task, and at
the same time, is also able to benefit from other tasks. We
have thus far, incorporated this paradigm by having a set of
parameters common among different tasks. The task specific
part of each task is captured by a factor specific to that
task. We extend this framework by splitting the common
set of parameters (label dependency) into two parts: one
task specific while other common. We hypothesize that the
whole label dependency factor may not be common to both
tasks, but only a part of it. As we shall see shortly that it
will bring flexibility in the model, allowing one to control
the amount of transfer among different tasks.

Along the lines of [24], we believe that the parameters
corresponding to the label dependency factor lie around a
common set of parameters having their own variance specific
to task. With this assumption, the common set of parame-



ters ψ can be written as:

ψy = ψo + νy

Now, ψo is the part that is common to all tasks while νy is
the task specific part. This is to indicate that there might
be a component of ψ that is only specific to that task when
considering parameters ψ. The task y model under this as-
sumption can be written as following (task z model will be
similar):

py(y, z|x, θy , νy , ψo) =
1

Uy(x)

T∏
t=1

exp
(∑

k

(
θykfk(yt−1, yt, xt)

+νykfk(yt, zt, xt) + ψokfk(yt, zt, xt)
))

The log likelihood under this model can be given as (with
Gaussian prior on each set of parameters):

`y(θy , νy , ψo) =

n∑
i=1

log py(y(i), z(i)|x(i), θy , νy , ψo)

−
ηy

2
‖θy‖2−

λ

2
‖νy‖2−

ηo

2
‖ψo‖2

We emphasize here the importance of the weight factor
λ associated with the regularization ‖ν‖2. This λ enforces
the model to share the label dependency parameters among
different tasks. A high value of λ/ηo means that there will be
more sharing among tasks while a small value of λ/ηo means
that the task would be unrelated as if there is no sharing of
parameters among tasks. Note that when λ/ηo → 0, it
will force parameters ψo to go to zero which will results in
an unshared model; and when λ/ηo → ∞, it will force
task-specific parameters θy and νy to go to zero which will
result in a model that will be completely shared, i.e., same
for all tasks. Therefore, one can also think of this λ factor
as an interpolating factor, interpolating between completely
shared model and an unshared model.

4. RELATED WORK
The work done in this paper relates to two streams of lit-

erature, one in dialogue-act/issue-status classification, and
other in multitask learning. To the best of our knowledge,
there has been no attempt to apply multitask learning frame-
work to customer-care domain for predicting dialogue acts
and issue status. Most of the work in the dialogue act clas-
sification has been done in spoken dialogue domain, and has
mainly focused on either feature engineering aspect of the
problem or experimenting with various classification tech-
niques. In spoken dialogue systems, Samuel et al. [27] and
Jurafsky et al. [18] focus on lexical and syntactic features,
Julia et al. [17] and Rangarajan Sridhar et al. [25] focus on
acoustic and prosodic features, while Louwerse and Cross-
ley [22] and Bangalore et al. [8] focus on using various n-
gram features. In the written dialogue systems, Forsyth [11]
used keyword based approaches to classify dialogue acts, and
Ivanovic [14] used n-gram based features. In the class of ex-
perimenting with various classification techniques, various
methods such as Hidden Markov Model [29], Naive Bayes
[14, 11], maximum entropy model [15], support vector ma-
chine [15] have been applied.

In multitask leaning, most of the work has focused on the
standard classification or regression problems, a very few
have focused on the sequence labeling problem, e.g. [30]. In
this work, authors do not use MTL setting directly. They

learn each task independently but in a cascaded manner
i.e. use the output of one task as input to the other, but
tests by considering all tasks simultaneously. Therefore, au-
thors do not make use of tasks’ relatedness or label depen-
dency at the training time. In classification and regression
MTL, there are mainly two approaches, Bayesian and non-
Bayesian. In both the approaches, one of the fundamental
problem is defining the task relatedness and then incorpo-
rating that in the model. In MTL literature, most of the ex-
isting methods first assume a structure that defines the task
relatedness, and then incorporate this structure in the MTL
framework in the form of a regularizer [6, 24, 16]. There are
many other approaches to multitask learning such as sub-
space methods [4, 6, 5], parameter proximity methods [24],
and task clustering methods [16]. In subspace method, it is
assumed that the parameters of different tasks lie in a sub-
space whereas in proximity method, we assume that task
parameters wt for each task is close to some common task
w0 with some variance vt. These vt and w0 are learned by
minimizing the Euclidean norm which is again equivalent to
working in the linear space. This idea of proximity method
is later generalized through manifold regularization [1] and
clustering [16].

For the sake of completeness we give a brief description
of Factorial CRF, which will also be our primary baseline.
Factorial CRF [31] model is an extension of linear-chain
CRFs that repeat structures and parameter over sequences.
If we denote by Φc(yc,t, xt) the repetition of clique c at time
step t, then a factorial CRF defines the probability of a label
sequence y given the input x as:

p(y|x) =

∏
t Φc(yc,t,xt)

Z(x)

Factorial CRF can be generalized to model connection be-
tween multiple label sequences, i.e. yl for l = {0, 1, .., L} for
the same input sequence x. Sutton, et al., [31] defines the
p(y|x) distribution as below:

p(y|x) =
1

Z(x)

(
T−1∏
t=1

L∏
l=1

Φl(yl,t, yl,t+1,x, t)

)
(

T∏
t=1

L−1∏
l=1

Ψl(yl,t, yl+1,t,x, t)

)

where Φl() is the task specific factor that models the de-
pendency between the consecutive tokens in a label sequence
whereas Ψl() is the label dependency factor that models the
dependency among labels of the same token. Although fac-
torial CRFs model the dependencies among multiple labels
in a sequence, it considers the whole learning problem as one
single task. Enforcing this one task structure on the problem
constrains the problem, leaving little room for independent
learning from multiple labeling tasks. On the other hand,
in our method, we break the problem into multiple tasks,
allowing room for flexibility for independent learning from
both label dependency factor Ψl and task specific factor Φl,
and at the same time benefiting from each other through
explicit parameter sharing.

Another line of work [13, 12] in which authors attempt
to use MTL framework to sequential tasks, is not applica-
ble to our setting because this framework does not really
consider multiple tasks as given in our problem, rather, it
artificially creates multiple tasks by considering auxiliary
tasks following the work of Ando and Zhang [2]. Dhillon
et al. [10] proposes another model for structured prediction



tasks (web structure) which falls into weight regularization
class of multitask learning methods. Unlike our method,
this method does not exploit the correlation between two
labels, and neither does it take advantage of the fact that
both label sequences belong to the same example sequence.
Furthermore, this method is particularly designed for web-
information extraction since it uses the web graph structure
for regularizing multiple tasks, and therefore, is not appli-
cable to our setting.

5. EXPERIMENTS
In this section, we describe the datasets, our experimental

methodology, and report results.

5.1 Dataset
We evaluate and report our results on two datasets. The

first dataset comes from an electronic conversation medium
over social media (twitter). The example set is borrowed
from real conversations (chat) between customers and cus-
tomer care agents for a particular telecommunication carrier.
Two specific tasks are designed in this case where the chat
sentences are labeled for (1) nature of dialogue between cus-
tomer and agent (namely Dialogue Act), and (2) nature of
the state of the issue being discussed by customer and agent
(namely Issue Status). We employed 3 annotators for label-
ing each sentence present in the conversations. Each conver-
sation is treated as a sequence example akin to a sentence in
the first dataset. For first task, sentences are annotated from
12 label as given in Table 3. For second task, sentences are
annotated with 4 labels: Open Issue, Issue Resolved, Change
Medium of Communication, and Issue Closed, as shown in
Table 2. We take 291 annotated conversations with a to-
tal of 3072 sentences with 10.6 sentences per conversation.
We append frequent bigrams, emoticons, punctuation and
standard word features such as capitalization etc.

In order to show the effectiveness of our method beyond
issue-status and dialogue act prediction problems, we also
experiment with a second dataset. This second dataset cor-
responds to a noun phrase chunking and POS tagging tasks,
and comes from a CoNLL 2000 shared-task 3. We take a
smaller set of the original data set primarily because MTL
only makes sense when single task learning (STL) is not suf-
ficient (i.e. it is difficult). This difficulty of STL can be
attributed to two main reasons– one, there are not enough
labeled examples, and second, the problem itself is a diffi-
cult problem despite being enough labeled examples. The
CoNLL dataset violates both of these conditions, i.e., there
are enough labeled examples, and these labeled examples
give a very good accuracy i.e., in the range of 99%. So in
order to make the MTL applicable here, we increase the dif-
ficulty of the problem by reducing the size of labeled data.
The smaller dataset consists of total 350 sentences contain-
ing 8785 individual tokens as examples. We split the data
into 150 train and 200 test examples. In this dataset, two
tasks correspond to the NP chunking and part-of-speech
(POS ) tagging. The idea is to get performance improve-
ment by learning from these two tasks simultaneously. This
dataset is also used in the baseline method by Sutton et
al., [31]. For the sake of completeness, we also ran our exper-
iments on full dataset, and all methods performed between

3Publicly available at [32] http://mallet.cs.umass.edu/
grmm/data

98% and 99%.

5.2 Models Comparisons
We use following models for comparisons. Among these

models, one is baseline, other models are ours, with different
variations.

• Factorial CRF[31]: We use this as our primary base-
line.

• Unshared model: Both tasks have their own sepa-
rate parameters (See Definition 1).

• JOSP: (Jointly Optimized Shared Parameters) This
is the shared model where parameters are learned by
optimizing the joint likelihood.

• AOSP: (Alternatively Optimized Shared Parameters)
This is the shared model but in contrast to the joint
optimization, here parameter are learned in an alter-
native fashion, i.e., we split the joint likelihood into
two parts, one for each task and optimize the param-
eters alternatively. ψ is still a common set of parame-
ters among both tasks however we do not optimize the
joint likelihood.

• JOVM: (Jointly Optimized Variance Model) Variance
model as defined in Section 3.2 but parameters are
learned by optimizing the joint likelihood.

• AOVM: (Alternatively Optimized Variance Model)
Variance model as defined in Section 3.2 but parame-
ters are learned alternatively.

5.3 Results
We use accuracy as our metric of evaluation. Here we

define accuracy as fraction of correctly labeled tokens in se-
quences present in the test set. It is important to note that
we report the accuracy from their respective models i.e.,
each model gives labels for all tasks but we take the labels
from the model that is specific to that task (as described
in Section 3.1). The results for the two datasets are pre-
sented in Table 4. We vary the training size and report the
results. All reported results are averaged over 10 random
runs, and their means and standard deviations are reported.
For the baseline, we use the code provided by the authors.
All the hyper-parameters are tuned via cross validation with
10 folds.

From these results we draw multiple conclusions: (1) In
general, learning tasks together in MTL setting —either di-
rectly or using variance method— helps. All results show
significant improvement over factorial CRF. This improve-
ment is higher when there are fewer labeled examples. (2)
Though in some cases, MTL (Shared model and Variance
model) helps over factorial CRF but learning them inde-
pendently (Unshared model) helps even more. e.g. Issue
Status task. This establishes the fact that not all tasks im-
prove from MTL. In fact, it shows that in multiple tasks,
one task can benefit from other tasks while another cannot.

From the accuracy figures, it can be inferred that the Task
1 is harder than Task 2 for both datasets. The results re-
ported show that the accuracy improvements are greater for
Task 1 compared to Task 2. For difficult tasks, results show
that learning both tasks independently (Unshared model)
hurts. Learning them together through explicit parame-
ter sharing gives significant improvement over Unshared

http://mallet.cs.umass.edu/grmm/data
http://mallet.cs.umass.edu/grmm/data


Category Description Example

Open When a conversation is ongoing and a further message is expected to
follow

@userxyz Hi, that’s not good.

Solved When the current message solves the problem mentioned in the current
conversation, without requiring any further message

No, your payment would just increase by $5 a month and you will
keep your Shrinkage milestone.

Closed When the current message closes the conversation, even if the problem is
not solved

@user123 We would rally hate to see you go.

Change Chan-
nel

When the CRM agent asks the customer to change channel by sending
an email or a direct message. In this case, the conversation halts since
further exchanges are on other private channels.

Can you please email me directly at xyz@abc.com and I will gladly
look into this.

Table 2: Categories to label the engagement status of tweets

Category Description Example

Complaint When a customer complains @vmucare IâĂŹve sent an email, but I am absolutely dis-
gusted with the customer care I am receiving

Apology When an agent apologies @kristenmchugh22 I do apologize for the inconvenience.

Answer When someone answers a request @BoostCare yea, allow my texts and calls to go out

Receipt When someone acknowledges receipt @VMUcare ok

Compliment When someone sends a compliment I still love VM and my intercept

Response to posi-
tivity

When someone acknowledges a previous positive message @harryruiz No problem!

Request When someone requests information Please help me out.

Greeting Greetings @LucusHughes13 Hi there!

Thank When someone expresses thanks Thank you for being so patient.

Announcement When a customer announces an information @VMUcare phone stolen last night

Solved When a message clearly states that a problem is solved Close one!

Other Any other message Wow!

Table 3: Categories to label tweets in conversations according to the linguistic theory of Conversation Analysis

or factorial CRF. This observation along with the observa-
tion that MTL improvement is higher when there are fewer
labeled examples, provide evidence in support of the hypoth-
esis about the applicability of MTL, i.e., MTL is applicable
when the underlying problem is difficult, either inherently
or because of the scarcity of labeled examples. The results
are not as clear for Task 2, but still, in these tasks, results
indicate that one should use MTL – either learn all tasks
together through explicit parameter sharing (Shared model
or Variance model) or not share anything at all (Unshared
model). Partial sharing (one task structure) as in factorial
CRF gives inferior results.

We also varied the training size and recorded the accu-
racies. The results are plotted in Figure 3 and Figure 4,
for CoNLL and conversation data respectively. These fig-
ure also support our earlier hypothesis. From these figures,
we see that when tasks are difficult (Task 1), MTL models
(variance and shared) perform better, but when tasks are
rather easy, Unshared model performs better.

Convergence of algorithms: In Figure 5, we plot the
negative likelihood of the data as algorithm progresses in
order to show the convergence of different variations of the
algorithm. These figures reveal that all variations of the
algorithm converge. Note that although the alternate op-
timization method is not theoretically guaranteed to con-
verge, it converges in practice, as seen in experiments across
the board. Because of convexity, in joint optimization, one
should expect a monotonic decrease in the likelihood, how-
ever, we notice that this is not the case, and there are some
irregularities in the figures. These irregularities are the arti-
fact of the optimization algorithm (i.e. BFGS) – sometimes
the optimization step does not move in the right gradient
direction and therefore needs restarting.

6. CONVERSATION ANALYSIS SYSTEM
To appreciate the effectiveness of dialogue act and issue

status predictions in a broader system-level user engagement
context, we present a social-CRM system use case. A tra-
ditional CRM system handles customer care requests in a
reactive manner where customer describes her issue via any
communication medium and CRM system offers potential

Figure 3: Variation with training size for CoNLL data

Figure 4: Variation with training size for conversation data

solutions. In contrast, a social-CRM system takes a proac-
tive approach where a listening component filters various
social media streams to spot users mentioning issues with
the respective product/service. The social-CRM agent then
engages the user into conversation regarding her issue and
offers potential solutions via social media itself. In such a
proactive system, engagements are of asynchronous nature
and often takes place among many agents to many users,
which makes it hard for keeping track of the progress of issue
resolutions. Therefore, an automated solution for effectively
tracking conversations is of paramount importance.

Dialogue act and issue status of conversations can pro-
vide an effective solution for automating the issue tracking
and various other qualitative and quantitative metrics that
a customer care center is typically interested in. For illus-
tration, we present the outline of an automated social-CRM



Table 4: Experimental results for MTL for CoNLL and Social Conversations datasets

Dataset Task %Train MTL DCRF
JOVM AOVM JOSP AOSP Unshared

POS Tagging (30%) 86.0 ± 1.3 86.3 ± 1.2 83.7 ± 1.6 84.1 ± 1.4 77.9 ± 1.2 81.6 ± 1.4
(Task 1) (60%) 91.5 ± 0.5 91.6 ± 0.4 90.7 ± 0.5 90.8 ± 0.6 85.7 ± 0.4 88.2 ± 0.5

CoNLL NP Chunking (30%) 89.0 ± 0.4 88.8 ± 0.9 88.5 ± 1.1 88.7 ± 0.9 88.8 ± 0.9 87.5 ± 0.8
(Task 2) (60%) 91.5 ± 0.5 91.6 ± 0.3 91.3 ± 0.5 91.4 ± 0.3 91.5 ± 0.4 90.7 ± 0.4

Dialogue Act (30%) 51.4 ± 2 50.7 ± 1.4 45.3 ± 2 50.5 ± 2 45.6 ± 2.0 48.9 ± 1.1
Social (Task 1) (60%) 56.7 ± 2.6 56.9 ± 1.8 55.7 ± 2.8 56.6 ± 1.6 52.1 ± 1.9 53.9 ± 1.2
Conversation Issue Status (30%) 77.2 ± 0.9 76.6 ± 0.8 74.4 ± 2.9 76.5 ± 1.1 77.2 ± 1.1 76.0 ± 1.4

(Task 2) (60%) 80.3 ± 1.1 80.5 ± 1.2 80.8 ± 1.5 80.0 ± 1.1 80.9 ± 0.6 79.4 ± 0.5

Figure 5: Convergence of different algorithms on Social Conver-
sation (top row) and CoNLL (bottom row) datasets.

system in Figure 6 where conversation analysis comprising
of dialogue act and issue status prediction is an integral part
of the system. The proposed automated system can be bro-
ken into further functional units where directional arrows
represent data flow among components.

Conversation Front-end corresponds to the listening phase
where a keyword (or semantics) based filtering spots users
having issues with the product/service. All the conversa-
tions resulting from customer agent interaction become in-
put to the conversation analysis phase.
Conversation Analysis Pipeline corresponds to dialogue
act and issue status identification phase. After generating
dialogue act and issue status labels (details in Section 3),
conversations that are about any issues are filtered for next
phase. All the conversations containing either of COMPLAINT,
REQUEST, ANNOUN or OPEN belong to this set.
Conversation Analytics corresponds to ”reporting and
further action” phase where various typical customer care
performance metrics are employed to (1) measure the ef-
fectiveness of social-CRM; and (2) identify issues that need
further follow up. Based upon dialogue act and issue status
labels, we can derive various effectiveness measures that can
be easily consumed in already existing performance metrics
of any CRM system. Following are a few categories of such
metrics:
(a) Issue Monitoring: Several metrics that characterize the
current state of a conversation fall in this category. (i) Issue
resolution rate can be defined as fraction of the conversations
whose first message is labeled as OPEN and last as SOLVED.
In our dataset (Section 5), there were a total of 56.61% such
cases. (ii) Properly handled conversations can be defined
as fraction of the conversations whose first message is la-

Figure 6: System Architecture

beled as OPEN and last as either of SOLVED, CLOSED, CHANGE

CHANNEL. In our dataset, we found 77.62% such cases. (iii)
Assistance conversations can be defined as fraction of the
conversations whose first message was labeled OPEN and RE-

QUEST. In our dataset, we found 31.18% such cases.
(b) Issues Summary: The conversation sentences that con-
tain either of COMPLAINT, REQUEST, ANNOUN and OPEN, can
be assumed primary issues faced by social media users. Fur-
ther clustering of these tweet sentences[26] can identify types
of issues processed by social-CRM system.
(c) Customer Satisfaction: (i) Customer conversion rate can
be defined as fraction of the conversations whose first mes-
sage was labeled as COMPLAINT or REQUEST and last as either
of THANKS, RESPOS, SOLVED, COMPLIMENT, ANSWER. Total
cases: 36.61%(ii) Customer ”hang-up” rate can be defined
as fraction of the conversations whose tail messages are la-
beled as COMPLAINT or REQUEST and no message as THANKS,
RESPOS, COMPLIMENT. Total cases: 34.57%
(d) Agent’s Performance: agent’s performance metrics can
be derived similarly by combining issues’ monitoring and
customers’ satisfaction rate on per agent basis.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel method for learn-

ing from multiple sequence labeling tasks, in particular for
issue status and dialogue act prediction tasks for social me-
dia user engagement. Unlike the previous methods, our
method models each task as one single model, but still trans-
fer the learning from other tasks through parameters shar-
ing. We have shown through various experiments on two
datasets that our method consistently outperforms the state-



of-the-art method for such tasks, especially in cases when
tasks are relatively harder and there are fewer labeled ex-
amples. One additional advantage of our method is that un-
like most methods in MTL in which each model only learns
on its own labels (and hence outputs its own labels only),
the proposed method learns using all labels which makes
this approach extensible for semi-supervised setting through
co-training. Since getting labeled data for such supervised
classification method is very expensive, we would like to
explore semi-supervised techniques to reduce the method’s
reliance on labeled data. Although our method can natu-
rally be extended for semi-supervised setting since it gives
two classifier models, each classifier predicting the labels for
both tasks, a experimental study verifying the effectiveness
of such method is yet to be done. A further theoretical anal-
ysis of understand the framework also remains to be done in
future.
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APPENDIX
A. FACTORIAL CRF AND SHARED JOINT

MODEL
For reference, we write below the factorial CRF model:

p(y, z|x, θy , θz , ψ) =
1

U(x)

T∏
t=1

exp

(∑
k

(
θykfk(xt, yt−1, yt)︸ ︷︷ ︸

task(y) factor

+ θzkfk(xt, zt−1, zt)︸ ︷︷ ︸
task(z) factor

+ ψfk(xt, yt, zt)︸ ︷︷ ︸
label dependency factor

))

It might look like that the above factorial CRF model is
similar to the product of the two models py and pz which it
is not. This is because of the normalization factor in indi-
vidual model. The product of two models ((5) and (6))can
be written as:

q(y, z|x, θy , θzψ) = py(y, z|x, θy , ψ) pz(y, z|x, θz , ψ)

=
1

U ′(x)

T∏
t=1

exp

(∑
k

θykfk(xt, yt−1, yt)

+ θzkfk(xt, zt−1, zt) + 2ψkfk(xt, yt, zt)

)
where

U ′(x) = Uy(x) Uz(x)

=

(∑
y,z

T∏
t=1

exp

(∑
k

(
θykfk(xt, yt−1, yt) + ψkfk(xt, yt, zt)

)))
(∑

y,z

T∏
t=1

exp

(∑
k

(
θzkfk(xt, zt−1, zt) + ψkfk(xt, yt, zt)

)))
6= U(x).

Note that in the above product of the two models, the nu-
merator is very similar to the factorial CRF, (they are the
same except that the common factor ψ is counted twice)
but the denominator is completely different. The denomi-
nator in factorial CRF cannot be written as the product of
the denominator of two models, i.e., U ′(x) 6= U(x). This
breaking of numerator is important because it allows the
model to break into multiple tasks hence allowing for in-
dependent learning, at the same time facilitating transfer
learning through parameter sharing.
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