Recommending Items to Users: An Explore Exploit Perspective

Deepak Agarwal, Director Machine Learning and Relevance Science, LinkedIn, USA

CIKM, 2013
Disclaimer

- Opinions expressed are mine and in no way represent the official position of LinkedIn

- Material inspired by work done at LinkedIn and Yahoo!
Main Collaborators: several others at both Y! and LinkedIn

- I won’t be here without them, extremely lucky to work with such talented individuals

Bee-Chung Chen
Liang Zhang
Bo Long
Jonathan Traupman
Item Recommendation problem
Arises in both advertising and content

Serve the “best” items (in different contexts) to users in an automated fashion to optimize long-term business objectives

Business Objectives
User engagement, Revenue,…
LinkedIn Today: Content Module

Objective: Serve content to maximize engagement metrics like CTR (or weighted CTR)
Similar problem:
Content recommendation on Yahoo! front page

Today module

Recommend content links
(out of 30-40, editorially programmed)

4 slots exposed, F1 has maximum exposure

Routes traffic to other Y! properties
LinkedIn Ads: Match ads to users visiting LinkedIn
Right Media Ad Exchange: Unified Marketplace

Match ads to page views on publisher sites

AdSense

Bids $0.60

Bids $0.50

Bids $0.75 via Network…

… which becomes $0.45 bid

Has ad impression to sell -- AUCTIONS

Bids $0.60

Bids $0.50

Bids $0.75 via Network…

… which becomes $0.45 bid

Bids $0.65—WINS!
User Interacts
e.g. click, does nothing

Machine Learning Models Updated in Batch mode: e.g. once every 30 mins

Item Recommendation system: thousands of computations in sub-seconds
High level overview: Item Recommendation System

Updated in batch:
Activity, profile

User Info

Pre-filter
SPAM, editorial,...
Feature extraction
NLP, clustering,...

Item Index
Id, meta-data

ML/Statistical Models

Score Items
P(Click), P(share), Semantic-relevance score,...

Rank Items:
sort by score (CTR, bid*CTR,...)
combine scores using Multi-obj optim,
Threshold on some scores,...

User-item interaction
Data: batch process
ML/Statistical models for scoring

Traffic volume

Number of items Scored by ML

LinkedIn Today
Yahoo! Front Page

Right Media Ad exchange
LinkedIn Ads

Few hours

Several days

ITEM

LIFETIME
Explore/Exploit deployments

- Yahoo! Front page Today Module (2008-2011): 300% improvement in click-through rates
 - Similar algorithms delivered via a self-serve platform, adopted by several Yahoo! Properties (2011): Significant improvement in engagement across Yahoo! Network
- Fully deployed on LinkedIn Today Module (2012): Significant improvement in click-through rates (numbers not revealed due to reasons of confidentiality)
- Yahoo! RightMedia exchange (2012): Fully deployed algorithms to estimate response rates (CTR, conversion rates). Significant improvement in revenue (numbers not revealed due to reasons of confidentiality)
- LinkedIn self-serve ads (2012): Tests on large fraction of traffic shows significant improvements. Fully deployed.
Statistical Problem

- Rank items (from an admissible pool) for user visits in some context to maximize a utility of interest
- Examples of utility functions
 - Click-rates (CTR)
 - Share-rates (CTR* [Share\&Click])
 - Revenue per page-view = CTR*bids (more complex due to second price auction)

- CTR is a fundamental measure that opens the door to a more principled approach to rank items
- Converge rapidly to maximum utility items
 - Sequential decision making process (explore/exploit)
LinkedIn Today, Yahoo! Today Module: Choose Items to maximize CTR
This is an “Explore/Exploit” Problem

Algorithm selects item j from a set of candidates

User i visits with user features
(e.g., industry, behavioral features, Demographic features,……)

(i, j) : response y_{ij} (click or not)

Which item should we select?
• The item with highest predicted CTR
• An item for which we need data to predict its CTR

Exploit
Explore
The Explore/Exploit Problem (to maximize CTR)

- Problem definition: Pick k items from a pool of N for a large number of serves to maximize the number of clicks on the picked items
- Easy!? Pick the items having the highest click-through rates (CTRs)
- But …
 - The system is highly dynamic:
 - Items come and go with short lifetimes
 - CTR of each item may change over time
 - How much traffic should be allocated to explore new items to achieve optimal performance?
 - Too little \rightarrow Unreliable CTR estimates due to “starvation”
 - Too much \rightarrow Little traffic to exploit the high CTR items
Y! front Page Application

- Simplify: Maximize CTR on first slot (F1)

- Item Pool
 - Editorially selected for high quality and brand image
 - Few articles in the pool but item pool dynamic
CTR Curves of Items on LinkedIn Today

2012-04-06

![CTR Curves of Items on LinkedIn Today](image-url)
Impact of repeat item views on a given user

- Same user is shown an item multiple times (despite not clicking)

![Graph showing the impact of repeat item views on CTR](image)
Simple algorithm to estimate most popular item with small but dynamic item pool

- **Simple Explore/Exploit scheme**
 - $\varepsilon\%$ explore: with a small probability (e.g. 5%), choose an item at random from the pool
 - $(100-\varepsilon)\%$ exploit: with large probability (e.g. 95%), choose highest scoring CTR item

- **Temporal Smoothing**
 - Item CTRs change over time, provide more weight to recent data in estimating item CTRs
 - Kalman filter, moving average

- **Discount item score with repeat views**
 - $\text{CTR}(\text{item})$ for a given user drops with repeat views by some “discount” factor (estimated from data)

- **Segmented most popular**
 - Perform separate most-popular for each user segment
More economical exploration? Better bandit solutions

- Consider two armed problem

\[p_1 > p_2 \] (unknown payoff probabilities)

The gambler has 1000 plays, what is the best way to experiment? (to maximize total expected reward)

This is called the “multi-armed bandit” problem, have been studied for a long time.

Optimal solution: Play the arm that has maximum potential of being good

Optimism in the face of uncertainty
Item Recommendation: Bandits?

- **Two Items**: Item 1 \(\text{CTR}= \frac{2}{100} \); Item 2 \(\text{CTR}= \frac{250}{10000} \)
 - *Greedy*: Show Item 2 to all; not a good idea
 - Item 1 CTR estimate noisy; item could be potentially better
 - Invest in Item 1 for better overall performance on average

- Exploit what is known to be good, explore what is potentially good
Explore/Exploit with large item pool/personalized recommendation

- Obtaining optimal solution difficult in practice
- Heuristic that is popularly used:
 - Reduce dimension through a supervised learning approach that predicts CTR using various user and item features for “exploit” phase
 - Explore by adding some randomization in an optimistic way
- Widely used supervised learning approach
 - Logistic Regression with smoothing, multi-hierarchy smoothing
- Exploration schemes
 - Epsilon-greedy, restricted epsilon-greedy, Thompson sampling, UCB
DATA

Select Item j with item covariates Z_j (keywords, content categories, ...)

User i visits $(i, j) : \text{response } y_{ij}$ (click/no-click)

(CONTEXT)

User i (User, context) covariates x_{it}

(profile information, device id, first degree connections, browse information, ...)

CONTEXT
Illustrate with Y! front Page Application

- **Simplify: Maximize CTR on first slot (F1)**

- **Article Pool**
 - Editorially selected for high quality and brand image
 - Few articles in the pool but article pool dynamic

- Users with many prior visits see recommendations “tailored” to their taste, others see the best for the “group” they belong to
Types of user covariates

- Demographics, geo:
 - Not useful in front-page application

- Browse behavior: activity on Y! network (\(x_{it} \))
 - Previous visits to property, search, ad views, clicks,..
 - This is useful for the front-page application

- Latent user factors based on previous clicks on the module (\(u_i \))
 - Useful for active module users, obtained via factor models (more later)
 - Teases out module affinity that is not captured through other user information, based on past user interactions with the module
Approach: Online + Offline

- Offline computation
 - Intensive computations done infrequently (once a day/week) to update parameters that are less time-sensitive

- Online computation
 - Lightweight computations frequent (once every 5-10 minutes) to update parameters that are time-sensitive
 - Exploration also done online
Online computation: per-item online logistic regression

- For item j, the state-space model is

$$y_{ijt} \sim \text{Bernoulli}(p_{ijt})$$

$$\text{logit}(p_{ijt}) = X'_i AZ_j + u'_i v_{jt} + x'_i \beta_{jt}$$

$$ (v_{j,t+1}, \beta_{j,t+1}) = (v_{j,t}, \beta_{j,t}) + \text{error}_{j,t+1} $$

$$ (v_{j,0}, \beta_{j,0}) = (0, 0) + \text{error}_{j,0} $$

X_i: All user features (including latent factors)

A: Coefficients estimated offline through a big logistic regression

(v_{jt}, β_{jt}): Item specific coefficients updated online frequently

Item coefficients are update online via Kalman-filter
Explore/Exploit

Three schemes (all work reasonably well for the front page application)

- **Epsilon-greedy**: Show article with maximum posterior mean except with a small probability epsilon, choose an article at random.

- **Upper confidence bound (UCB)**: Show article with maximum score, where score = post-mean + k post-std

- **Thompson sampling**: Draw a sample (v, β) from posterior to compute article CTR and show article with maximum drawn CTR
Computing the user latent factors (the u’s)

- Computing user latent factors
 - This is computed offline once a day using retrospective (user, item) interaction data for last X days (X = 30 in our case)
 - Computations are done on Hadoop
Regression based Latent Factor Model

\[y_{ij} \sim Ber(p_{ij}) \] (# obs. per user has wide variation)

\[\log t(p_{ij}) = u_{ik} v_{jk} = u_i v_j \] (need shrinkage on factors)

\[u_i = G x_i + \epsilon_i \sim N(0, \text{diag}(s_1^2, s_2^2, \ldots, s_r^2)) \]

\[v_i = D Z_j + \eta_j \sim N(0, I) \]

\[\nu_{ik} = 0 \]
Role of shrinkage (consider Gaussian for simplicity)

- For new user/article, factor estimates based on covariates

\[u_{new} = \tilde{G}x_{new}^{user}, \quad v_{new} = \tilde{D}Z_{new}^{item} \]

For old user, factor estimates

\[E(u_i \mid \text{Rest}) = (I + \sum_{j} v_j v_j' N_i) \left(\tilde{G}x_i^{user} + \sum_{j} y_{ij} v_j N_i \right) \]

- Linear combination of prior regression function and user feedback on items
Estimating the Regression function via EM

Maximize

\[
\int (\prod_{ij} f(u_i, v_j, \text{Data}) \prod_i g(u_i, G) \prod_j g(v_j, D)) \prod_i du_i \prod_j dv_j
\]

Integral cannot be computed in closed form, approximated by Monte Carlo using Gibbs Sampling

For logistic, we use ARS (Gilks and Wild) to sample the latent factors within the Gibbs sampler
Scaling to large data on via distributed computing (e.g. Hadoop)

- Randomly partition by users
- Run separate model on each partition
 - Care taken to initialize each partition model with same values, constraints on factors ensure “identifiability of parameters” within each partition

- Create ensembles by using different user partitions, average across ensembles to obtain estimates of user factors and regression functions
 - Estimates of user factors in ensembles uncorrelated, averaging reduces variance
Data Example

- 1B events, 8M users, 6K articles
- Offline training produced user factor u_i
- Our Baseline: logistic without user feature u_i

\[
\log_t(p_{ijt}) = x_{it} \cdot u_{jt}
\]

- Overall click lift by including u_i: 9.7%,
- Heavy users (> 10 clicks last month): 26%
- Cold users (not seen in the past): 3%
Click-lift for heavy users

CTR LIFT Relative to NO u_i

Logistic Model
Multiple Objectives: An example in Content Optimization

Clicks on FP links influence downstream supply distribution.

AD SERVER
DISPLAY ADVERTISING Revenue

Downstream engagement
(Time spent)

SPORTS
NEWS
OMG
FINANCE
Multiple Objectives

- What do we want to optimize?
- One objective: Maximize clicks
- But consider the following
 - Article 1: CTR=5%, utility per click = 5
 - Article 2: CTR=4.9%, utility per click=10
 - By promoting 2, we lose 1 click/100 visits, gain 5 utils
- If we do this for a large number of visits --- lose some clicks but obtain significant gains in utility?
 - E.g. lose 5% relative CTR, gain 40% in utility (e.g revenue, time spent)
An example of Multi-Objective Optimization
(Details: Agarwal et al, SIGIR 2012)

\[w_{ij}: \text{probability of serving item } j \text{ to user } i \]
\[d_{ij}: \text{downstream utility, } p^*_{ij}: \text{max CTR item} \]

\[
\max \sum_i \sum_j w_{ij} p_{ij} d_{ij} + \text{small strong convexity} \\
\text{s.t.} (1 - \left(\sum_i \sum_j w_{ij} p_{ij} / \sum_i p^*_{ij} \right)) < \alpha
\]

Solution: Items ranked by \(p_{ij} d_{ij} + \mu p_{ij} \)

Lagrange multiplier
LinkedIn Advertising: Brand, Self-Serve, Sponsored updates
Profile: region = US, age = 20
Context = profile page, 300 x 250 ad slot

Click Cost = Bid\textsubscript{3} \times \frac{CTR\textsubscript{3}}{CTR\textsubscript{2}}
CTR Prediction Model for Ads

- **Feature vectors**
 - Member feature vector: x_i
 - Campaign feature vector: c_j
 - Context feature vector: z_k

- **Model:**

\[
y_{ijt} \sim \text{Bernoulli}(p_{ijt}),
\]

\[
p_{ijt} = \frac{1}{1 + \exp(-s_{ijt})}.
\]

\[
s_{ijt} = \omega + s_{ijt}^{1,c} + s_{ijt}^{2,c} + s_{ijt}^{2,w}
\]

\[
s_{ijt}^{1,c} = x'_i \alpha + c'_j \beta + z'_t \gamma
\]

\[
s_{ijt}^{2,c} = x'_i Ac_j + x'_i Cz_t + z'_t Bc_j
\]

\[
s_{ijt}^{2,w} = \delta_j + x'_i \eta_j + z'_t \xi_j
\]
CTR Prediction Model for Ads

- **Feature vectors**
 - Member feature vector: x_i
 - Campaign feature vector: c_j
 - Context feature vector: z_k

- **Model:**

$$y_{ijt} \sim Bernoulli(p_{ijt}),$$

$$p_{ijt} = \frac{1}{1 + \exp(-s_{ijt})}.$$

$$s_{ijt} = \omega + s_{ijt}^{1,c} + s_{ijt}^{2,c} + s_{ijt}^{2,w}$$

- **Cold-start component**
 $$s_{ijt}^{1,c} = x'_i \alpha + c'_j \beta + z'_t \gamma$$

- **Warm-start per-campaign component**
 $$s_{ijt}^{2,c} = x'_i A c_j + x'_i C z_t + z'_t B c_j$$

 $$s_{ijt}^{2,w} = \delta_j + x'_i \eta_j + z'_t \xi_j$$
CTR Prediction Model for Ads

- Feature vectors
 - Member feature vector: x_i
 - Campaign feature vector: c_j
 - Context feature vector: z_k

- Model:
 \[
 y_{ijt} \sim \text{Bernoulli}(p_{ijt}),
 \]
 \[
 p_{ijt} = \frac{1}{1 + \exp(-s_{ijt})}.
 \]
 \[
 s_{ijt} = \omega + s_{ijt}^{1,c} + s_{ijt}^{2,c} + s_{ijt}^{2,w}
 \]
 \[
 s_{ijt}^{1,c} = x'_i \alpha + c'_j \beta + z'_t \gamma
 \]
 \[
 s_{ijt}^{2,c} = x'_i Ac_j + x'_i Cz_t + z'_t Bc_j
 \]
 \[
 s_{ijt}^{2,w} = \delta_j + x'_i \eta_j + z'_t \xi_j
 \]

Cold-start:
\[
\Theta_c = \{\omega, \alpha, \beta, \gamma, A, B, C\}
\]

Warm-start:
\[
\Theta_w = \{\delta_j, \eta_j, \xi_j\}, j = 1, \ldots, J.
\]

Both can have L2 penalties.
Model Fitting

- Single machine (well understood)
 - conjugate gradient
 - L-BFGS
 - Trusted region
 - ...

- Model Training with Large scale data
 - Cold-start component Θ_w is more stable
 - Weekly/bi-weekly training good enough
 - However: difficulty from need for large-scale logistic regression
 - Warm-start per-campaign model Θ_c is more dynamic
 - New items can get generated any time
 - Big loss if opportunities missed
 - Need to update the warm-start component as frequently as possible
Model Fitting

- Single machine (well understood)
 - conjugate gradient
 - L-BFGS
 - Trusted region
 - ...

- Model Training with Large scale data
 - Cold-start component Θ_w is more stable
 - Weekly/bi-weekly training good enough
 - However: difficulty from need for large-scale logistic regression
 - Warm-start per-campaign model Θ_c is more dynamic
 - New items can get generated any time
 - Big loss if opportunities missed
 - Need to update the warm-start component as frequently as possible

Large Scale Logistic Regression

Per-item logistic regression given Θ_c
Large Scale Logistic Regression: Computational Challenge

- Hundreds of millions/billions of observations
- Hundreds of thousands/millions of covariates
- Fitting a logistic regression model on a single machine not feasible
- Model fitting iterative using methods like gradient descent, Newton’s method etc
 - Multiple passes over the data

Problem: Find x to $\min(F(x))$

Iteration n: $x_n = x_{n-1} - b_{n-1} F'(x_{n-1})$

- b_{n-1} is the step size that can change every iteration
- Iterate until convergence
- Conjugate gradient, LBFGS, Newton trust region, …
Compute using Map-Reduce
Large Scale Logistic Regression

- **Naïve:**
 - Partition the data and run logistic regression for each partition
 - Take the mean of the learned coefficients
 - Problem: Not guaranteed to converge to global solution

- **Alternating Direction Method of Multipliers (ADMM)**
 - Boyd et al. 2011
 - Set up constraints: each partition’s coefficient = global consensus
 - Solve the optimization problem using Lagrange Multipliers
 - Advantage: converges to global solution
Large Scale Logistic Regression via ADMM

Iteration 1

BIG DATA

Partition 1
Logistic Regression

Partition 2
Logistic Regression

Partition 3
Logistic Regression

Partition K
Logistic Regression

Consensus Computation
Large Scale Logistic Regression via ADMM

Iteration 1
Large Scale Logistic Regression via ADMM

Iteration 2

BIG DATA

Partition 1
Partition 2
Partition 3
Partition K

Logistic Regression
Logistic Regression
Logistic Regression
Logistic Regression

Consensus Computation
Large Scale Logistic Regression via ADMM

- **Notation**
 - \((X_i, y_i)\): data in the \(i^{th}\) partition
 - \(\beta_i\): coefficient vector for partition \(i\)
 - \(\beta\): Consensus coefficient vector
 - \(r(\beta)\): penalty component such as \(\|\beta\|_2^2\)

- **Optimization problem**

\[
\min \sum_{i=1}^{N} l_i(y_i, X_i^T \beta_i) + r(\beta)
\]

subject to \(\beta_i = \beta\)
ADMM updates

\[\beta_i^{k+1} = \arg\min_{\beta_i} (l_i(y_i, X_i^T \beta_i) + \frac{\rho}{2} \| \beta_i - \beta_i^k + u_i^k \|_2^2) \]

\[\beta^{k+1} = \arg\min_{\beta} (r(\beta) + \frac{N \rho}{2} \| \beta - \bar{\beta}^{k+1} - \bar{u}^k \|_2^2) \]

\[u_i^{k+1} = u_i^k + \beta_i^{k+1} - \beta_i^{k+1} \]

LOCAL REGRESSIONS
Shrinkage towards current best global estimate

UPDATED CONSENSUS
ADMM at LinkedIn

- Lessons and Improvements
 - Initialization is important (ADMM-M)
 - Use the mean of the partitions’ coefficients
 - Reduces number of iterations by 50%
 - Adaptive step size (learning rate) (ADMM-MA)
 - Exponential decay of learning rate
 - Together, these optimizations reduce training time from 10h to 2h
Explore/Exploit with Logistic Regression

E/E: Sample a line from the posterior (Thompson Sampling)

COLD + WARM START for an Ad-id

POSTERIOR of WARM-START COEFFICIENTS
Models Considered

- CONTROL: per-campaign CTR counting model
- COLD-ONLY: only cold-start component
- LASER: our model (cold-start + warm-start)
- LASER-EE: our model with Explore-Exploit using Thompson sampling
Metrics

- **Model metrics**
 - Test Log-likelihood
 - AUC/ROC
 - Observed/Expected ratio

- **Business metrics (Online A/B Test)**
 - CTR
 - CPM (Revenue per impression)
Observed / Expected Ratio

- Observed: #Clicks in the data
- Expected: Sum of predicted CTR for all impressions
- Not a “standard” classifier metric, but in many ways more useful for this application
- What we usually see: Observed / Expected < 1
 - Quantifies the “winner’s curse” aka selection bias in auctions
 - When choosing from among thousands of candidates, an item with mistakenly over-estimated CTR may end up winning the auction
- Particularly helpful in spotting inefficiencies by segment
 - E.g. by bid, number of impressions in training (warmness), geo, etc.
 - Allows us to see where the model might be giving too much weight to the wrong campaigns
- High correlation between O/E ratio and model performance online
Offline: ROC Curves

False Positive Rate
True Positive Rate

False Positive Rate

CONTROL [0.672]
COLD-ONLY [0.757]
LASER [0.778]
Online A/B Test

- Three models
 - CONTROL (10%)
 - LASER (85%)
 - LASER-EE (5%)

- Segmented Analysis
 - 8 segments by campaign warmness
 - Degree of warmness: the number of training samples available in the training data for the campaign
 - Segment #1: Campaigns with almost no data in training
 - Segment #8: Campaigns that are served most heavily in the previous batches so that their CTR estimate can be quite accurate
Daily CTR Lift Over Control

Percentage of CTR Lift

- LASER
- LASER−EE

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
Daily CPM Lift Over Control

Percentage of eCPM Lift

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

LASER LASER-EE

+\% +\% +\% +\% +\% +\% +\%
CPM Lift By Campaign Warmness Segments

![Graph showing CPM Lift By Campaign Warmness Segments](image-url)
O/E Ratio By Campaign Warmness Segments

![Graph showing the O/E ratio by campaign warmness segments. The graph plots the observed click/expected clicks ratio against different campaign warmness segments. The segments are labeled as CONTROL, LASER, and LASER-EE, each represented by a different marker style.]
Number of Campaigns Served Improvement from E/E
Insights

- **Overall performance:**
 - LASER and LASER-EE are both much better than control
 - LASER and LASER-EE performance are very similar

- **Segmented analysis by campaign warmness**
 - Segment #1 (very cold)
 - LASER-EE much worse than LASER due to its exploration property
 - LASER much better than CONTROL due to cold-start features
 - Segments #3 - #5
 - LASER-EE significantly better than LASER
 - Winner’s curse hit LASER
 - Segment #6 - #8 (very warm)
 - LASER-EE and LASER are equivalent

- **Number of campaigns served**
 - LASER-EE serves significantly more campaigns than LASER
 - Provides healthier market place
Takeaways

- Reducing dimension through logistic regression coupled with explore/exploit schemes like Thompson sampling effective mechanism to solve response prediction problems in advertising
- Partitioning model components by cold-start (stable) and warm-start (non-stationary) with different training frequencies effective mechanism to scale computations
- ADMM with few modifications effective model training strategy for large data with high dimensionality
- Methods work well for LinkedIn advertising, significant improvements
Current Work

- Investigating Spark and various other fitting algorithms
 - Promising results, ADMM still looks good on our datasets

- Stream Ads
 - Multi-response prediction (clicks, shares, likes, comments)
 - Filtering low quality ads extremely important
 - Revenue/Engagement tradeoffs (Pareto optimal solutions)

- Stream Recommendation
 - Holistic solution to both content and ads on the stream

- Large scale ML infrastructure at LinkedIn
 - Powers several recommendation systems
Summary

- Large scale Machine Learning plays an important role in recommender problems

- Several such problems can be cast as explore/exploit tradeoff

- Estimating interactions in high-dimensional sparse data via supervised learning important for efficient exploration and exploitation

- Scaling such models to Big Data is a challenging statistical problem

- Combining offline + online modeling with classical explore/exploit algorithm is a good practical strategy
Other challenges

- **3Ms**: Multi-response, Multi-context modeling to optimize Multiple Objectives
 - Multi-response: Clicks, share, comments, likes,.. (preliminary work at CIKM 2012)
 - Multi-context: Mobile, Desktop, Email,.. (preliminary work at SIGKDD 2011)
 - Multi-objective: Tradeoff in engagement, revenue, viral activities
 - Preliminary work at SIGIR 2012, SIGKDD 2011

- **Scaling model computations at run-time to avoid latency issues**
 - Predictive Indexing (preliminary work at WSDM 2012)
LASER Configuration

Feature processing pipeline
- **Sources**: transform external data into feature vectors
- **Transformers**: modify/combine feature vectors
- **Assembler**: Packages features vectors for training/inference

Configuration language
- Model structure can be changed extensively
- Library of reusable components
- Train, test, and deploy models without any code changes
- Speeds up model development cycle
LASER Transformer Pipeline

Request → Context Source → Subset → Interaction → Assembler → Training or Inference

User profile → User Source → Subset → Interaction → Assembler → Training or Inference

Item → Item Source → Subset → Interaction → Assembler → Training or Inference
LASER Performance

- **Real time inference**
 - About 10μs per inference (1500 ads = 15ms)
 - Reacts to changing features immediately

- **“Better wrong than late”**
 - If a feature isn’t immediately available, back off to prior value

- **Asynchronous computation**
 - Actions that block or take time run in background threads

- **Lazy evaluation**
 - Sources & transformers do not create feature vectors for all items
 - Feature vectors are constructed/transformed only when needed

- **Partial results cache**
 - Logistic regression inference is a series of dot products
 - Scalars are small; cache can be huge
 - Hardware-like implementation to minimize locking and heap pressure
Summary

- Large scale Machine Learning plays an important role in computational advertising and content recommendation

- Several such problems can be cast as explore/exploit tradeoff

- Estimating interactions in high-dimensional sparse data via supervised learning important for efficient exploration and exploitation

- Scaling such models to Big Data is a challenging statistical problem

- Combining offline + online modeling with classical explore/exploit algorithm is a good practical strategy
Other challenges

- 3Ms: Multi-response, Multi-context modeling to optimize Multiple Objectives
 - Multi-response: Clicks, share, comments, likes,.. (preliminary work at CIKM 2012)
 - Multi-context: Mobile, Desktop, Email,.. (preliminary work at SIGKDD 2011)
 - Multi-objective: Tradeoff in engagement, revenue, viral activities
 - Preliminary work at SIGIR 2012, SIGKDD 2011

- Scaling model computations at run-time to avoid latency issues
 - Predictive Indexing (preliminary work at WSDM 2012)