
Recommending Items to Users: An Explore Exploit

Perspective

Deepak Agarwal, Director Machine Learning and

Relevance Science, LinkedIn, USA

CIKM, 2013

Disclaimer

 Opinions expressed are mine and in no way

represent the official position of LinkedIn

 Material inspired by work done at LinkedIn and

Yahoo!

Main Collaborators: several others at both Y! and

LinkedIn

 I won’t be here without them, extremely lucky to work with such

talented individuals

Bee-Chung Chen Liang Zhang Bo Long

Jonathan Traupman

 Item Recommendation problem

Arises in both advertising and content

 Serve the “best” items (in different

contexts) to users in an automated

fashion to optimize long-term

business objectives

Business Objectives

 User engagement, Revenue,…

LinkedIn Today: Content Module

Objective: Serve content to maximize engagement

metrics like CTR (or weighted CTR)

Similar problem:

Content recommendation on Yahoo! front page

Recommend content links

(out of 30-40, editorially

programmed)

4 slots exposed, F1 has

maximum exposure

Routes traffic to other Y!

properties

F1 F2 F3 F4

Today module

LinkedIn Ads: Match ads to users visiting LinkedIn

Right Media Ad Exchange: Unified Marketplace

Match ads to page views on publisher sites

Has ad

impression

to sell --

AUCTIONS

Bids $0.50
Bids $0.75 via Network…

… which becomes

$0.45 bid

Bids $0.65—WINS!

AdSense
Ad.com

Bids $0.60

High level picture

http request

Machine Learning

Models Updated in

Batch mode: e.g. once every

30 mins

Server

Item

Recommendation

system: thousands

of computations in

sub-seconds

User Interacts

e.g. click,

does nothing

High level overview: Item Recommendation System

User Info

Item Index

Id, meta-data

 ML/

Statistical

Models

Score Items

P(Click), P(share),

Semantic-relevance

 score,….

 Rank Items:

 sort by score (CTR,bid*CTR,..)

 combine scores using Multi-obj optim,

 Threshold on some scores,….

User-item interaction

Data: batch process

Updated in batch:

Activity, profile

Pre-filter
SPAM,editorial,,..

Feature extraction

NLP, cllustering,..

ML/Statistical models for scoring

Number of items

Scored by ML
Traffic volume

1000 100 100k 1M 100M

Few hours

Few days

Several days

LinkedIn Today

Yahoo! Front Page

Right Media Ad exchange

LinkedIn Ads

Explore/Exploit deployments

 Yahoo! Front page Today Module (2008-2011): 300% improvement

in click-through rates

– Similar algorithms delivered via a self-serve platform, adopted by

several Yahoo! Properties (2011): Significant improvement in

engagement across Yahoo! Network

 Fully deployed on LinkedIn Today Module (2012): Significant

improvement in click-through rates (numbers not revealed due to

reasons of confidentiality)

 Yahoo! RightMedia exchange (2012): Fully deployed algorithms to

estimate response rates (CTR, conversion rates). Significant

improvement in revenue (numbers not revealed due to reasons of

confidentiality)

 LinkedIn self-serve ads (2012): Tests on large fraction of traffic

shows significant improvements. Fully deployed.

Statistical Problem

 Rank items (from an admissible pool) for user visits in

some context to maximize a utility of interest

 Examples of utility functions

– Click-rates (CTR)

– Share-rates (CTR* [Share|Click])

– Revenue per page-view = CTR*bid (more complex due to

second price auction)

 CTR is a fundamental measure that opens the door to a

more principled approach to rank items

 Converge rapidly to maximum utility items

– Sequential decision making process (explore/exploit)

item j from a set of candidates

User i

with

user features

(e.g., industry,

 behavioral features,

Demographic

features,……)

 (i, j) : response yij visits

Algorithm selects

(click or not)

Which item should we select?

 The item with highest predicted CTR

 An item for which we need data to

 predict its CTR

Exploit

Explore

LinkedIn Today, Yahoo! Today Module:

Choose Items to maximize CTR

This is an “Explore/Exploit” Problem

The Explore/Exploit Problem (to maximize CTR)

 Problem definition: Pick k items from a pool of N for a large number

of serves to maximize the number of clicks on the picked items

 Easy!? Pick the items having the highest click-through rates

(CTRs)

 But …

– The system is highly dynamic:

 Items come and go with short lifetimes

 CTR of each item may change over time

– How much traffic should be allocated to explore new items to achieve

optimal performance ?

 Too little Unreliable CTR estimates due to “starvation”

 Too much Little traffic to exploit the high CTR items

Y! front Page Application

 Simplify: Maximize CTR on first slot (F1)

 Item Pool

– Editorially selected for high quality and brand image

– Few articles in the pool but item pool dynamic

CTR Curves of Items on LinkedIn Today
C

T
R

Impact of repeat item views on a given user

 Same user is shown an item multiple times (despite not clicking)

Simple algorithm to estimate most popular item with

small but dynamic item pool

 Simple Explore/Exploit scheme

– % explore: with a small probability (e.g. 5%), choose an
item at random from the pool

– (100−)% exploit: with large probability (e.g. 95%),
choose highest scoring CTR item

 Temporal Smoothing
– Item CTRs change over time, provide more weight to recent

data in estimating item CTRs

 Kalman filter, moving average

 Discount item score with repeat views
– CTR(item) for a given user drops with repeat views by some

“discount” factor (estimated from data)

 Segmented most popular
– Perform separate most-popular for each user segment

More economical exploration? Better bandit solutions

 Consider two armed problem

p2
(unknown payoff

probabilities)

The gambler has 1000 plays, what is the best way to experiment ?

 (to maximize total expected reward)

 This is called the “multi-armed bandit” problem, have been studied for a long time.

 Optimal solution: Play the arm that has maximum potential of being good

 Optimism in the face of uncertainty

p1 >

http://digitalmedia.ucf.edu/site_files/images/port_interfaces/dmsinterface_slot.jpg
http://digitalmedia.ucf.edu/site_files/images/port_interfaces/dmsinterface_slot.jpg

Item Recommendation: Bandits?

 Two Items: Item 1 CTR= 2/100 ; Item 2 CTR= 250/10000

– Greedy: Show Item 2 to all; not a good idea

– Item 1 CTR estimate noisy; item could be potentially better

 Invest in Item 1 for better overall performance on average

– Exploit what is known to be good, explore what is potentially good

CTR

P
ro

b
ab

il
it

y
 d

en
si

ty

Item 2

Item 1

Explore/Exploit with large item pool/personalized

recommendation

 Obtaining optimal solution difficult in practice

 Heuristic that is popularly used:

– Reduce dimension through a supervised learning approach

that predicts CTR using various user and item features for

“exploit” phase

– Explore by adding some randomization in an optimistic way

 Widely used supervised learning approach

– Logistic Regression with smoothing, multi-hierarchy smoothing

 Exploration schemes

– Epsilon-greedy, restricted epsilon-greedy, Thompson sampling, UCB

DATA

Item j with

User i

(User, context)

covariates xit

(profile information, device id,

first degree connections,

browse information,…)

item covariates Zj
(keywords, content categories, ...)

 (i, j) : response yij visits

 Select

(click/no-click)

CONTEXT

Illustrate with Y! front Page Application

 Simplify: Maximize CTR on first slot (F1)

 Article Pool
– Editorially selected for high quality and brand image

– Few articles in the pool but article pool dynamic

 We want to provide personalized recommendations
– Users with many prior visits see recommendations “tailored” to

their taste, others see the best for the “group” they belong to

Types of user covariates

 Demographics, geo:
– Not useful in front-page application

 Browse behavior: activity on Y! network (xit)
– Previous visits to property, search, ad views, clicks,..

– This is useful for the front-page application

 Latent user factors based on previous clicks on the
module (ui)

– Useful for active module users, obtained via factor
models(more later)
 Teases out module affinity that is not captured through other user

information, based on past user interactions with the module

Approach: Online + Offline

 Offline computation

– Intensive computations done infrequently (once

a day/week) to update parameters that are less

time-sensitive

 Online computation

– Lightweight computations frequent (once every 5-10

minutes) to update parameters that are time-

sensitive

– Exploration also done online

Online computation: per-item online logistic regression

 For item j, the state-space model is

Item coefficients are update online via Kalman-filter

Explore/Exploit

 Three schemes (all work reasonably well for the
front page application)

– epsilon-greedy: Show article with maximum posterior
mean except with a small probability epsilon, choose an
article at random.

– Upper confidence bound (UCB): Show article with
maximum score, where score = post-mean + k. post-std

– Thompson sampling: Draw a sample (v,β) from posterior
to compute article CTR and show article with maximum
drawn CTR

 Computing the user latent factors(the u’s)

 Computing user latent factors

– This is computed offline once a day using

retrospective (user,item) interaction data for last

X days (X = 30 in our case)

– Computations are done on Hadoop

Regression based Latent Factor Model

ui =Gxi +ei
u, ei

u ~ N(0,diag(s1

2,s 2

2,..,s r

2))

vi =DZ j +e j
v, e j

v ~ N(0, I)

vik ³ 0

yij ~ Ber(pij) (# obs. per user has wide variation)

lg t(pij) = uikv jk
k

å = ¢uiv j (need shrinkage on factors)

regression weight matrix user/item-specific correction terms (learnt from data)

Role of shrinkage (consider Guassian for

simplicity)

 For new user/article, factor estimates based on

covariates

For old user, factor estimates

 Linear combination of prior regression function

and user feedback on items

unew =Gxnew
user, vnew =DZnew

item

E(ui | Rest) = (lI + v jv j
'

jÎNi

å)-1(lGxi
user + yijv j

jÎNi

å)

 Estimating the Regression function via EM

j i j

jij

i

iji

ij

ddDgGgDataf vuvuvu)),(),(),,((

Maximize

Integral cannot be computed in closed form,

approximated by Monte Carlo using Gibbs Sampling

For logistic, we use ARS (Gilks and Wild) to sample the

latent factors within the Gibbs sampler

Scaling to large data on via distributed

computing (e.g. Hadoop)

 Randomly partition by users

 Run separate model on each partition

– Care taken to initialize each partition model with
same values, constraints on factors ensure
“identifiability of parameters” within each partition

 Create ensembles by using different user partitions,
average across ensembles to obtain estimates of
user factors and regression functions

– Estimates of user factors in ensembles uncorrelated,
averaging reduces variance

Data Example

 1B events, 8M users, 6K articles

 Offline training produced user factor ui

 Our Baseline: logistic without user feature ui

 Overall click lift by including ui: 9.7%,

 Heavy users (> 10 clicks last month): 26%

 Cold users (not seen in the past): 3%

lgt(pijt) = xit
' b jt

Click-lift for heavy users

CTR LIFT Relative to NO ui

Logistic Model

 Multiple Objectives: An example in Content

Optimization

Recommender

EDITORIAL

 content
Clicks on FP links influence

downstream supply distribution

 AD SERVER

 DISPLAY

ADVERTISING Revenue

Downstream

engagement

 (Time spent)

Multiple Objectives

 What do we want to optimize?

 One objective: Maximize clicks

 But consider the following

– Article 1: CTR=5%, utility per click = 5

– Article 2: CTR=4.9%, utility per click=10

 By promoting 2, we lose 1 click/100 visits, gain 5 utils

 If we do this for a large number of visits --- lose some clicks but

obtain significant gains in utility?

– E.g. lose 5% relative CTR, gain 40% in utility (e.g revenue, time spent)

An example of Multi-Objective Optimization

(Details: Agarwal et al, SIGIR 2012)

Lagrange multiplier

LinkedIn Advertising: Brand, Self-Serve, Sponsored

updates

Click Cost =

 Bid3 x

CTR3/CTR2

Profile:

region = US, age = 20

Context = profile page,

300 x 250 ad slot

Ad

request

Sorted by

Bid * CTR

Response

Prediction

Engine

Campaigns eligible for

auction

Automatic

Format

Selection

Filter Campaigns

(Targeting criteria,

 Frequency Cap,

Budget Pacing)

SERVING

Serving constraint < 100 millisec

CTR Prediction Model for Ads

 Feature vectors

– Member feature vector: xi

– Campaign feature vector: cj

– Context feature vector: zk

 Model:

CTR Prediction Model for Ads

 Feature vectors

– Member feature vector: xi

– Campaign feature vector: cj

– Context feature vector: zk

 Model:

Cold-start component

Warm-start

per-campaign component

CTR Prediction Model for Ads

 Feature vectors

– Member feature vector: xi

– Campaign feature vector: cj

– Context feature vector: zk

 Model:

Cold-start component

Warm-start

per-campaign component

Cold-start:

Warm-start:

Both can have L2

penalties.

Model Fitting

 Single machine (well understood)

– conjugate gradient

– L-BFGS

– Trusted region

– …

 Model Training with Large scale data

– Cold-start component Θw is more stable

 Weekly/bi-weekly training good enough

 However: difficulty from need for large-scale logistic regression

– Warm-start per-campaign model Θc is more dynamic

 New items can get generated any time

 Big loss if opportunities missed

 Need to update the warm-start component as frequently as possible

Model Fitting

 Single machine (well understood)

– conjugate gradient

– L-BFGS

– Trusted region

– …

 Model Training with Large scale data

– Cold-start component Θw is more stable

 Weekly/bi-weekly training good enough

 However: difficulty from need for large-scale logistic regression

– Warm-start per-campaign model Θc is more dynamic

 New items can get generated any time

 Big loss if opportunities missed

 Need to update the warm-start component as frequently as possible

Large Scale Logistic

Regression

Per-item logistic regression

given Θc

Large Scale Logistic Regression: Computational

Challenge

 Hundreds of millions/billions of observations

 Hundreds of thousands/millions of covariates

 Fitting a logistic regression model on a single machine not feasible

 Model fitting iterative using methods like gradient descent,

Newton’s method etc

– Multiple passes over the data

 Problem: Find x to min(F(x))

 Iteration n: xn = xn-1 – bn-1 F’(xn-1)

 bn-1 is the step size that can change every iteration

 Iterate until convergence

 Conjugate gradient, LBFGS, Newton trust region, …

Compute using Map-Reduce

Big Data

Partition 1 Partition 2 … Partition N

Mapper 1 Mapper 2 … Mapper N

<Key, Value> <Key, Value> <Key, Value> <Key, Value>

Reducer 1 Reducer 2 Reducer M …

Output 1 Output 1 Output 1 Output 1

Large Scale Logistic Regression

 Naïve:

– Partition the data and run logistic regression for each partition

– Take the mean of the learned coefficients

– Problem: Not guaranteed to converge to global solution

 Alternating Direction Method of Multipliers (ADMM)

– Boyd et al. 2011

– Set up constraints: each partition’s coefficient = global consensus

– Solve the optimization problem using Lagrange Multipliers

– Advantage: converges to global solution

Large Scale Logistic Regression via ADMM

BIG DATA

Partition 1 Partition 2 Partition 3 Partition K

Logistic

Regression

Logistic

Regression
Logistic

Regression

Logistic

Regression

Consensus

Computation

Iteration 1

Large Scale Logistic Regression via ADMM

BIG DATA

Partition 1 Partition 2 Partition 3 Partition K

Logistic

Regression

Consensus

Computation

Logistic

Regression

Logistic

Regression

Logistic

Regression

Iteration 1

Large Scale Logistic Regression via ADMM

BIG DATA

Partition 1 Partition 2 Partition 3 Partition K

Logistic

Regression

Logistic

Regression
Logistic

Regression

Logistic

Regression

Consensus

Computation

Iteration 2

Large Scale Logistic Regression via ADMM

 Notation

– (Xi , yi): data in the ith partition

– βi: coefficient vector for partition i

– β: Consensus coefficient vector

– r(β): penalty component such as ||β||2
2

 Optimization problem

ADMM updates

LOCAL REGRESSIONS

Shrinkage towards current

best global estimate

UPDATED

CONSENSUS

ADMM at LinkedIn

 Lessons and Improvements

– Initialization is important (ADMM-M)

 Use the mean of the partitions’ coefficients

 Reduces number of iterations by 50%

– Adaptive step size (learning rate) (ADMM-MA)

 Exponential decay of learning rate

– Together, these optimizations reduce training time from 10h to 2h

Explore/Exploit with Logistic Regression

55

+
+

+
+

+

+

+

_

_

_

_

_

_

_

_

_

_ _

_

_

COLD START

COLD + WARM START

for an Ad-id

POSTERIOR of WARM-START

COEFFICIENTS

E/E: Sample a line from the

posterior

(Thompson Sampling)

Models Considered

 CONTROL: per-campaign CTR counting model

 COLD-ONLY: only cold-start component

 LASER: our model (cold-start + warm-start)

 LASER-EE: our model with Explore-Exploit using Thompson

sampling

Metrics

 Model metrics

– Test Log-likelihood

– AUC/ROC

– Observed/Expected ratio

 Business metrics (Online A/B Test)

– CTR

– CPM (Revenue per impression)

Observed / Expected Ratio

 Observed: #Clicks in the data

 Expected: Sum of predicted CTR for all impressions

 Not a “standard” classifier metric, but in many ways more useful for

this application

 What we usually see: Observed / Expected < 1

– Quantifies the “winner’s curse” aka selection bias in auctions

 When choosing from among thousands of candidates, an item with

mistakenly over-estimated CTR may end up winning the auction

 Particularly helpful in spotting inefficiencies by segment

– E.g. by bid, number of impressions in training (warmness), geo, etc.

– Allows us to see where the model might be giving too much weight to

the wrong campaigns

 High correlation between O/E ratio and model performance online

Offline: ROC Curves

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

0.0

0.2

0.4

0.6

0.8

1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

CONTROL [0.672]
COLD−ONLY [0.757]
LASER [0.778]

Online A/B Test

 Three models

– CONTROL (10%)

– LASER (85%)

– LASER-EE (5%)

 Segmented Analysis

– 8 segments by campaign warmness

 Degree of warmness: the number of training samples available in the

training data for the campaign

 Segment #1: Campaigns with almost no data in training

 Segment #8: Campaigns that are served most heavily in the previous

batches so that their CTR estimate can be quite accurate

Daily CTR Lift Over Control

P
e

rc
e
n
ta

g
e
 o

f
C

T
R

L
if
t

+%

+%

+%

+%

+%

D
a
y
 1

D
a
y
 2

D
a
y
 3

D
a
y
 4

D
a
y
 5

D
a
y
 6

D
a
y
 7

●

● ●

●

●

●

●
●

LASER
LASER−EE

Daily CPM Lift Over Control

P
e
rc

e
n

ta
g
e
 o

f
e
C

P
M

L

if
t

+%

+%

+%

+%

+%

+%

D
a
y
 1

D
a
y
 2

D
a
y
 3

D
a
y
 4

D
a
y
 5

D
a
y
 6

D
a
y
 7

●

●

●

● ●

●

●

●

LASER
LASER−EE

CPM Lift By Campaign

Warmness Segments

Campaign Warmness Segment

L
if
t
P

e
rc

e
n

ta
g

e
 o

f
C

P
M

−%

−%

−%

0%

+%

+%

1 2 3 4 5 6 7 8

LASER

LASER−EE

O/E Ratio By Campaign

Warmness Segments

Campaign Warmness Segment

O
b
s
e

rv
e
d

 C
lic

k
/E

x
p
e

c
te

d
 C

lic
k
s

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

CONTROL

LASER

LASER−EE

Number of Campaigns Served Improvement from E/E

Insights

 Overall performance:

– LASER and LASER-EE are both much better than control

– LASER and LASER-EE performance are very similar

 Segmented analysis by campaign warmness

– Segment #1 (very cold)

 LASER-EE much worse than LASER due to its exploration property

 LASER much better than CONTROL due to cold-start features

– Segments #3 - #5

 LASER-EE significantly better than LASER

 Winner’s curse hit LASER

– Segment #6 - #8 (very warm)

 LASER-EE and LASER are equivalent

 Number of campaigns served

– LASER-EE serves significantly more campaigns than LASER

– Provides healthier market place

Takeaways

 Reducing dimension through logistic regression coupled with

explore/exploit schemes like Thompson sampling effective

mechanism to solve response prediction problems in advertising

 Partitioning model components by cold-start (stable) and warm-start

(non-stationary) with different training frequencies effective

mechanism to scale computations

 ADMM with few modifications effective model training strategy for

large data with high dimensionality

 Methods work well for LinkedIn advertising, significant

improvements

©2013 LinkedIn Corporation. All Rights Reserved.

Current Work

 Investigating Spark and various other fitting algorithms

– Promising results, ADMM still looks good on our datasets

 Stream Ads

– Multi-response prediction (clicks, shares, likes, comments)

– Filtering low quality ads extremely important

 Revenue/Engagement tradeoffs (Pareto optimal solutions)

 Stream Recommendation

– Holistic solution to both content and ads on the stream

 Large scale ML infrastructure at LinkedIn

– Powers several recommendation systems

©2013 LinkedIn Corporation. All Rights Reserved.

Summary

 Large scale Machine Learning plays an important role in
recommender problems

 Several such problems can be cast as explore/exploit
tradeoff

 Estimating interactions in high-dimensional sparse data via
supervised learning important for efficient exploration and
exploitation

 Scaling such models to Big Data is a challenging statistical
problem

 Combining offline + online modeling with classical
explore/exploit algorithm is a good practical strategy

Other challenges

 3Ms: Multi-response, Multi-context modeling to optimize Multiple

Objectives

– Multi-response: Clicks, share, comments, likes,.. (preliminary work at

CIKM 2012)

– Multi-context: Mobile, Desktop, Email,..(preliminary work at SIGKDD

2011)

– Multi-objective: Tradeoff in engagement, revenue, viral activities

 Preliminary work at SIGIR 2012, SIGKDD 2011

 Scaling model computations at run-time to avoid latency issues

– Predictive Indexing (preliminary work at WSDM 2012)

Backup slides

©2013 LinkedIn Corporation. All Rights Reserved.

LASER Configuration

 Feature processing pipeline
– Sources: transform external data into feature vectors

– Transformers: modify/combine feature vectors

– Assembler: Packages features vectors for training/inference

 Configuration language
– Model structure can be changed extensively

– Library of reusable components

– Train, test, and deploy models without any code changes

– Speeds up model development cycle

LASER Transformer Pipeline

User Source
Context

Source
Item Source

Subset Subset

Interaction

Assembler

Request
User

profile
Item

Training or

Inference

LASER Performance

 Real time inference

– About 10µs per inference (1500 ads = 15ms)

– Reacts to changing features immediately

 “Better wrong than late”

– If a feature isn’t immediately available, back off to prior value

 Asynchronous computation

– Actions that block or take time run in background threads

 Lazy evaluation

– Sources & transformers do not create feature vectors for all items

– Feature vectors are constructed/transformed only when needed

 Partial results cache

– Logistic regression inference is a series of dot products

– Scalars are small; cache can be huge

– Hardware-like implementation to minimize locking and heap pressure

Summary

 Large scale Machine Learning plays an important role in
computational advertising and content recommendation

 Several such problems can be cast as explore/exploit
tradeoff

 Estimating interactions in high-dimensional sparse data via
supervised learning important for efficient exploration and
exploitation

 Scaling such models to Big Data is a challenging statistical
problem

 Combining offline + online modeling with classical
explore/exploit algorithm is a good practical strategy

Other challenges

 3Ms: Multi-response, Multi-context modeling to optimize Multiple

Objectives

– Multi-response: Clicks, share, comments, likes,.. (preliminary work at

CIKM 2012)

– Multi-context: Mobile, Desktop, Email,..(preliminary work at SIGKDD

2011)

– Multi-objective: Tradeoff in engagement, revenue, viral activities

 Preliminary work at SIGIR 2012, SIGKDD 2011

 Scaling model computations at run-time to avoid latency issues

– Predictive Indexing (preliminary work at WSDM 2012)

