Netflix Optimization: A Confluence of Metrics, Algorithms, and Experimentation CIKM 2013, UEO Workshop Caitlin Smallwood

Allegheny

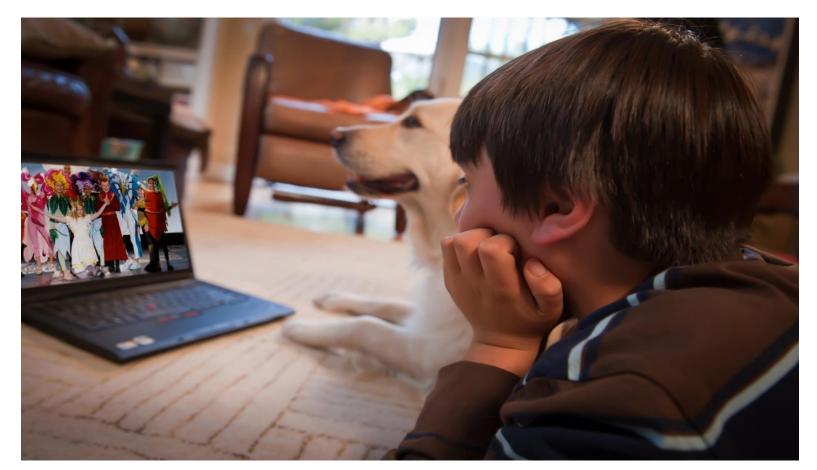
Monongahela

Ohio River

TV & Movie Enjoyment Made Easy

Stream any video in our collection on a variety of devices for \$7.99 a month

Content Partners



Original Content

Development

The UI

NETFLIX

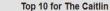
Watch Instantly - Just for Kids -

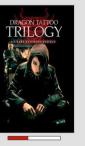
Taste Profile - DVDs

The Caitlin Smal... 🔻 | Your Account | Help

Movies, TV shows, actors, directors, genres **Q**

Recently Watched

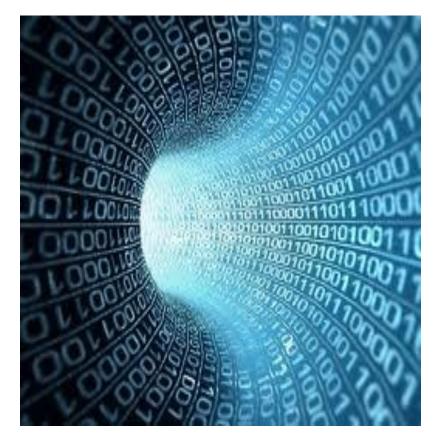




Instant Queue

TV Shows Popular on Netflix

Movies Popular on Netflix



- Visitor data
- User Metadata
- Social
- Users' Plays (streaming)
- Users' Ratings
- Users' Searches
- Device streaming performance
- Video Metadata
- Video Impressions

A few facts

- 40M members globally
- Ratings: 4M+/day
- Searches: 3M+/day
- Plays: 1B+/month

Metrics

"Engagement is a user's response to an interaction that gains, maintains, and encourages their attention, particularly when they are intrinsically motivated"

- Jacques, 1996

User Engagement Measurement Techniques

- Self-reported or "explicit"
 - Satisfaction, likelihood to recommend, likelihood to use or re-use, self-reported usage, self-reported preferences
- Physical observation of users
 - User experience in-person research, eye tracking
- Behavioral observation of users
 - Analytics on behavioral data

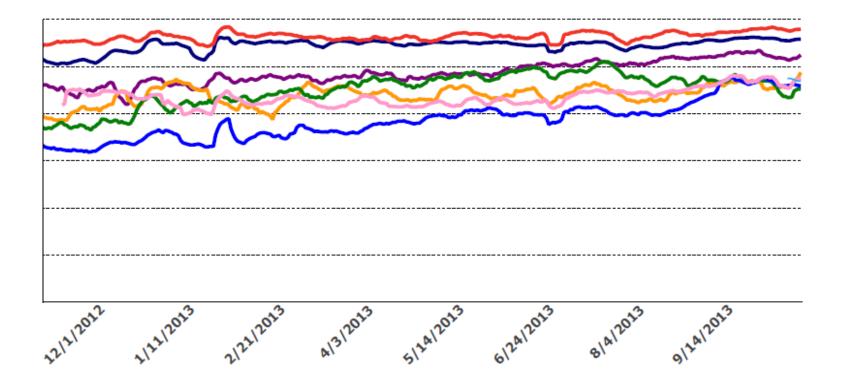
Common user engagement metrics

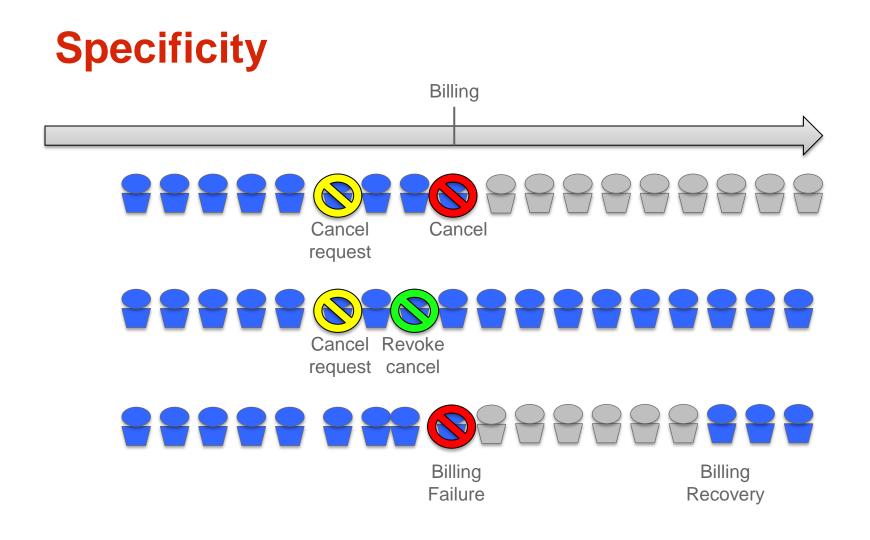
- Lifetime value (LTV)
- Retention
- Page views
- Time spent
- Number of distinct actions
- Recency of last visit/use
- Time between visits/uses

YOUR Engagement Metrics

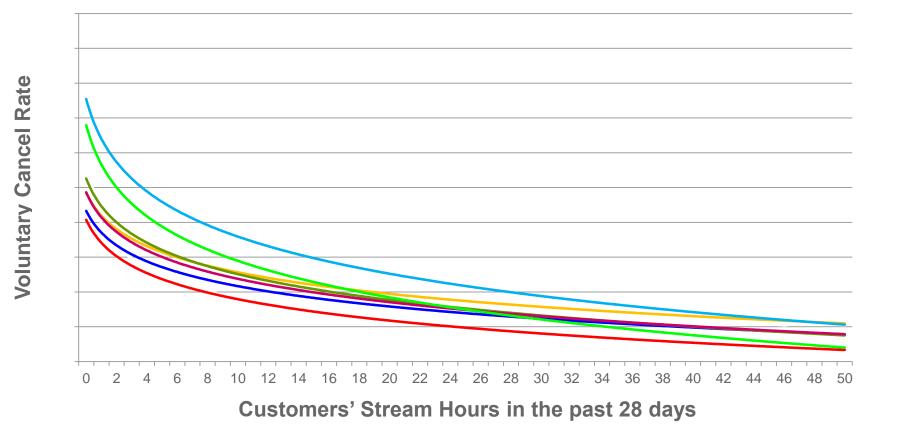
- What's your business model?
 - Monthly subscription
- What do you want your customers to do?
 - Retain monthly (forever) because they enjoy the service
- What do your happiest, most valuable customers do?
 - Retain month over month...
 - and watch

Monthly Retention

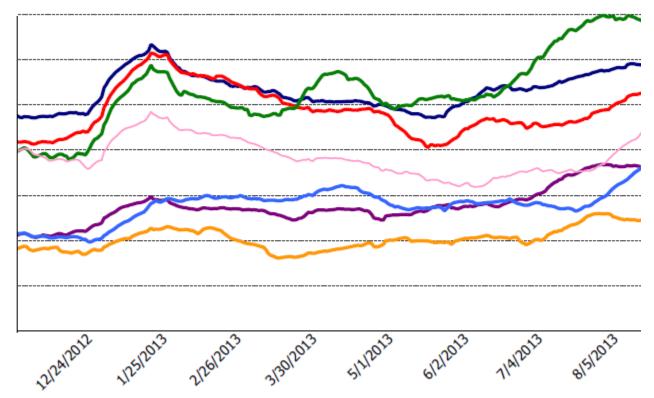




Our most satisfied customers watch more



Median streaming hours per user



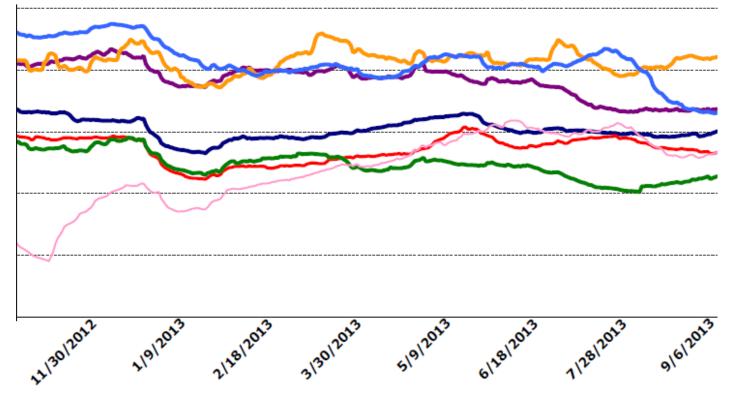
*Over 28-day period

User engagement = user granularity

- % of users who do x
- Medians or better, distributions of user-level volume measures

Negative metrics can also be useful

Percent of users with no streaming*



One process for identifying engagement metrics

- Decide on criteria for a "good" metric
- Brainstorm metrics that might meet criteria
- Identify the best candidates
 - Predictive modeling or other analytic techniques
 - Expert judgment
 - Qualitative research
- Validate by trying to use the metric
 - Experiment measurement
 - Algorithm or model input
 - Trends

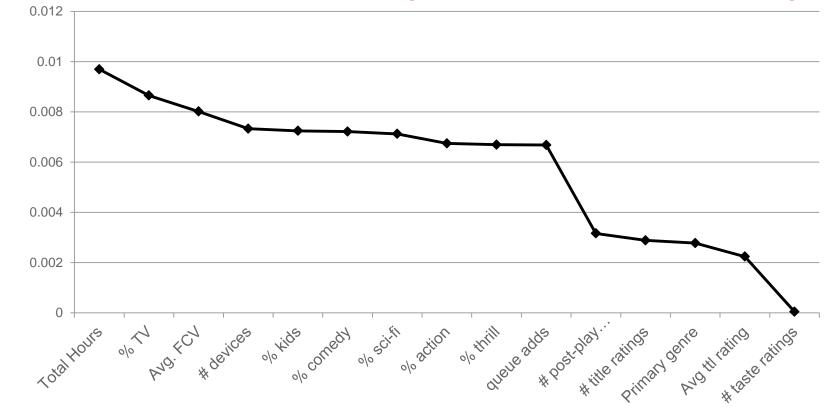
Some metric criteria suggestions

- Metric is correlated with core business metrics (conversion, retention)
 - and contributes unique predictive power beyond the other metrics?
- Metric is user-level or weights users properly toward core metrics
- Metric is actionable
- Metric shows differentiation

Brainstorm from all angles

- Variety/novelty, joy, trust, focused attention
- Positive and negative experiences
- What, who, how, why?
- Recency, Frequency, Monetization
- Short-term, long-term, changes over time
- Metric variants

Example of ranking metrics' abilities to explain core business metrics (retention in this case)



Algorithms

Algorithms for...

- Content recommendations
- Search results
- Streaming experience

80% of plays are based on recommendations

Same algorithms power the recommendations on all devices

The Basics

Data Inputs

Explicit member data

- Taste preferences
- Title ratings

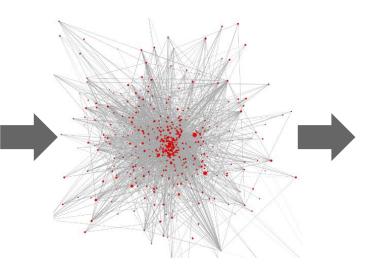
Implicit member data

- Viewing history
- Queue adds
- Ratings

Non-personalized data

- Content library
- Title tags
- Popularity

Algorithms



Recommendations

- Rows
- Titles within rows

What the algorithms do

- Row selection
- Video ranking
- Video-video similarity
- User-user similarity
- Search recommendations

Also need to consider complex characteristics and tradeoffs such as:

- Popularity vs personalization
- Diversity
- Novelty/Freshness
- Evidence

Probability, statistics, optimization, dynamic systems

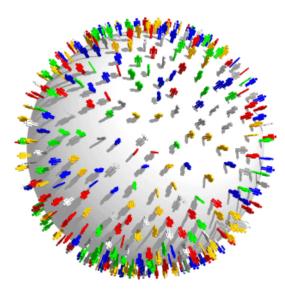
- Hypothesis testing, estimation, delta method, bootstrapping
- Linear and generalized linear models
- Matrix factorization
- Markov processes
- Various clustering algorithms
- Bayesian models

- Latent Dirichlet Allocation
- L1 and L2 regularizations
- Association Rules
- Tree-based methods
- Bagging and boosting
- Vector spaces and the Mahalanobis distance

. . .

Source of Signals

Individuals



Entire

population

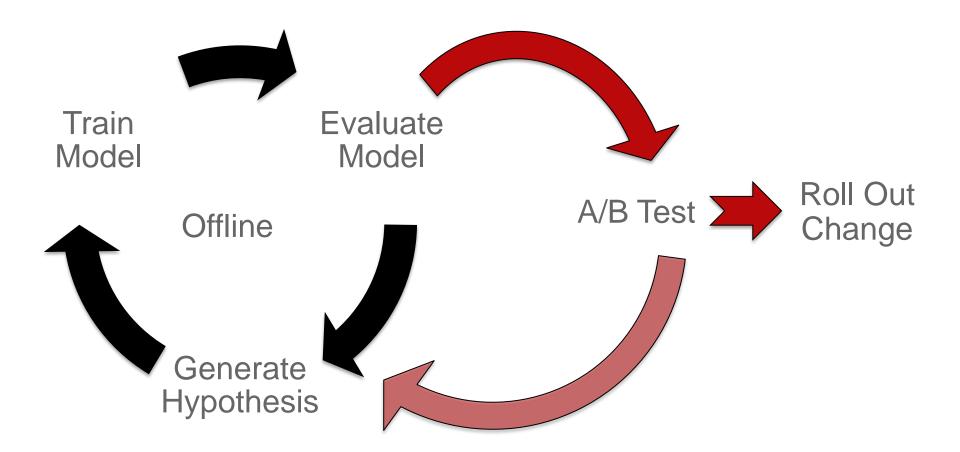


Segments

Any can provide valuable signals

Evolution occurs through experimentation

Faster Innovation Through Offline Testing



Offline Metrics

- Offline metrics help guide decisions on what to A/B test
 - Understand metric limitations and ignore as needed
- No offline set of metrics is predictive enough of cancelation rates
- Some metrics predict *local* algorithm metrics
 - In-line with the way algorithms are optimized

Root Mean Squared Error (RMSE)

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

Historically used to measure accuracy of predicted star ratings; good for offline optimization?

Why would RMSE improvement be a key driver to increase retention?

VS.



Our best guess for Carlos: 4.4 stars Average of 2,514,641 ratings: 4.4 stars FROM THE GROMOOS WHO ANCHOR

Our best guess for Carlos: 3.2 stars Average of 23,041 ratings: 2.7 stars

Personalized Video Ranking

70187727

TopGear

70140457

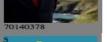
how

70143824

.VOU

70143846

70143821



70198119

70136120

Diaries

theffice

VERA

70157383

70142410

70148124

GALACTICA

Personalized Video Ranking

- TopN problem
- Natural metrics come from information retrieval:
 - Mean reciprocal rank
 - Precision
 - Recall
 - •
- But which correlate with cancelation rates and overall usage?

Interesting Challenges in Algorithms

- How do we develop recommender systems that directly optimize long term goals (user retention and overall consumption) offline?
- The effect of presentation bias
 - Can any offline metric help?
 - Can we remove this bias from our signals and algorithms?
- What's the best way to define the space of rows of videos?
- What's the best way to construct a page of recommendations?
- How can we best cold-start users and videos?

Experimentation

Controlled Experiment

Target population

Random distribution

Version 'A'

	1 Month Free Trial
Email	
Confirm Email	
Password	
Confirm Password	
,	Continue time Barver I not sell or nert your email address. ay context you about the Nerfills. a. See our Provety Policy.

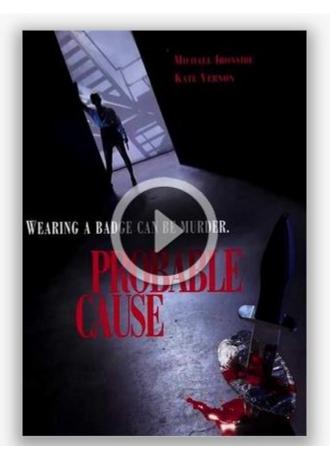
Identical except for the treatment being tested!

Version 'B'

	1 Month Free Tria
Email	
Confirm Email	
Password	
Confirm Password	
	Continue Discurs Server Wile with rots all or next your email address. We may contact you about the NextRix service. See for Privacy Policy.

Analyze & compare key metrics (with statistical confidence measures)

The Appeal: Causality



Probable Cause

Our best guess for Caitlin overall: 2.8 stars

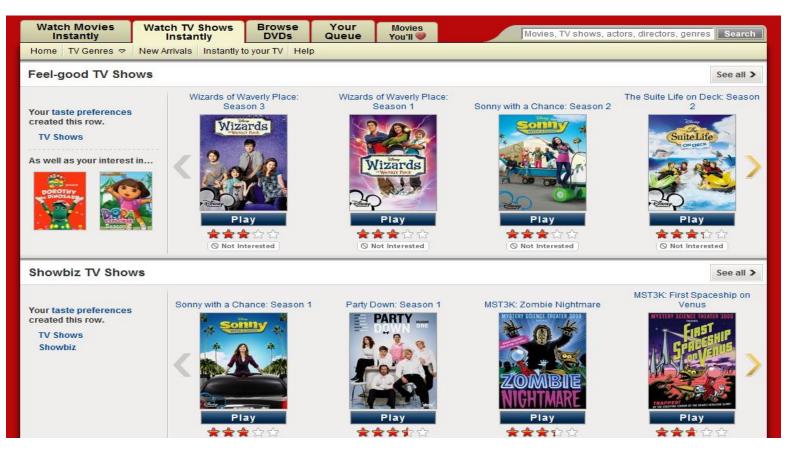
Average of 37,551 ratings: 3.3 stars

Police detective Gary Yanuck and his partner face a high-pressure engagement when they're tasked with nabbing a serial killer who's already offed a string of police officers and shows no sign of slowing down.

Recommend to a friend

Ingredients of great experimentation

- Innovation and prioritization of impactful tests
- Experimental design (methodology, test cell design, sampling...)
- Execution of controlled experiment
- Accuracy (of data, engineering, statistics)
- Proper decision-making metrics & measurement techniques
- Pace & agility
- Interpretation and decision-making



Now

Watch Instantly - Just for Kids - Taste Profile -

Movies, TV shows, actors, directors, genr ${f Q}$

CALL THE MIDWIFE

TOP: RELAKE

Caitlin ov... 👻

PLAYING for KEEPS

Recently Watched

My List See All

Added 1 hour ago

Top 10 for Caitlin overall

SIDE EFFECTS

the KILLING

American Horror Story

Characteristics specific to Netflix testing

Challenges

- Sampling of new members has efficiency limitations
- Monthly billing cycles increase our testing timelines
- Breadth of devices and UIs impact pace of execution and add complexity across the ecosystem

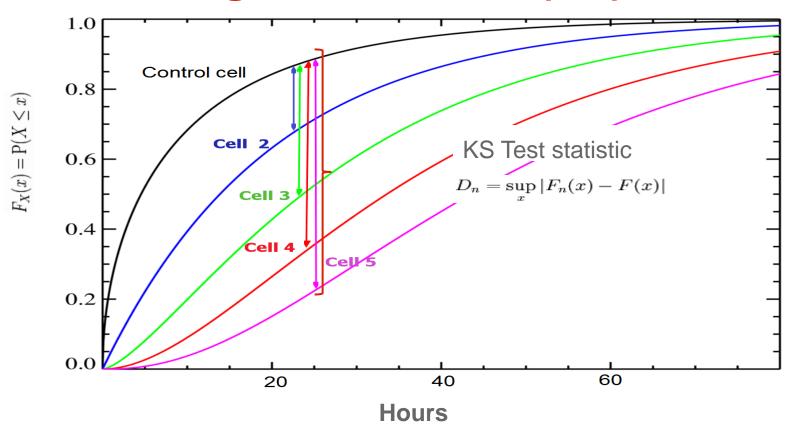
Assets

- Clear core metrics
- Member identification (logged-in, paying customers)
- Great data
- Bias toward product simplicity
- Culture of learning, openness,
 & debate
- Executive commitment & participation

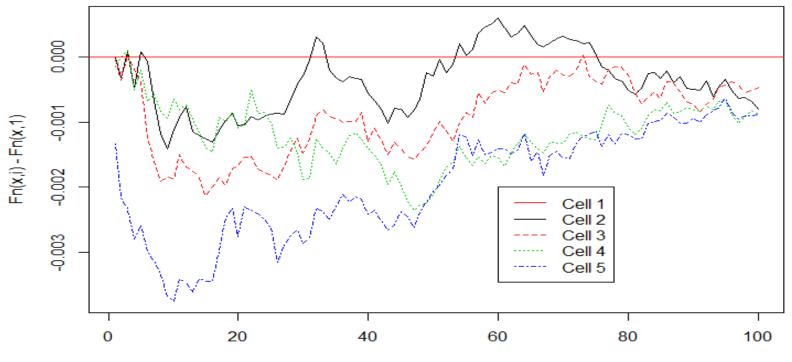
Metrics

- Cumulative Retention
- Streaming
- Many other "secondary" engagement metrics

Streaming measurement: Kolmogorov-Smirnov (KS) test



Streaming measurement: KS example



ViewHours

Streaming measurement: Thresholds with z-tests for proportions

Profiles win confirmation test

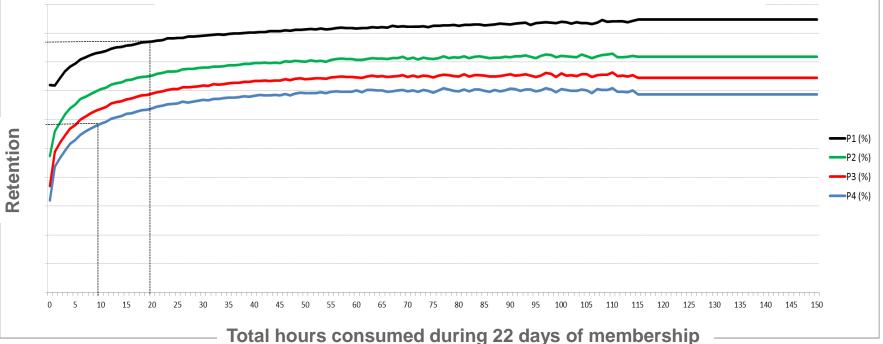
Who's watching?

Whole family Caitlin overall The Kididdles Add Profile

Display Cell	1 💌	2 💌
Cell Name	Profiles Enabled	Holdback
Comparison Cell Set All 💌	1 💌	1
% Accounts with > 0 Hours	93.5%	93.5% 0.619
% Accounts with >= 1 Hour	89.1%	89.0% 0.440
% Accounts with >= 5 Hours	80.5%	80.4% 0.258
% Accounts with >= 10 Hours	72.6%	72.4% 0.089
% Accounts with >= 20 Hours	59.7%	59.2% 0.001
% Accounts with >= 40 Hours	40.7%	40.2% 0.000
% Accounts with >= 80 Hours	18.9%	18.5% 0.001

Streaming measurement: Streaming score model

Probability of retaining at each future billing cycle based on streaming S hours at N days of tenure



Challenges with "hours"

- Not all "hours" have equal value to customers
- TV vs features have dramatically different consumption rates
- Service is available after cancel request
- Timespan for hours measurement

"Similars Algorithm" Experiment

More Like Thor

Algorithm A

More Like Thor

Algorithm B

What should we measure in this test?

- Ideas?
- Retention & overall streaming
- CTR on Similars rows; Share of hours from similars rows?
 - Should we care about cannibalization?
- Horizontal position played?
- Should we measure whether the new algorithm generated results that were more "similar"?
- What does the customer expect out of the row based on its label?
- Did the customer enjoy the titles more even if he/she did not watch more in total hours?

How might we know whether a customer enjoyed a title?

- Gave it a high rating
 - But only a subset of users rate
- Came back to watch again
 - Different opportunity for a TV show vs movie
- Fraction of content viewed

• $FCV = \frac{duration watched}{title runtime}$

Fraction of Content Viewed ("FCV")

Average FCV

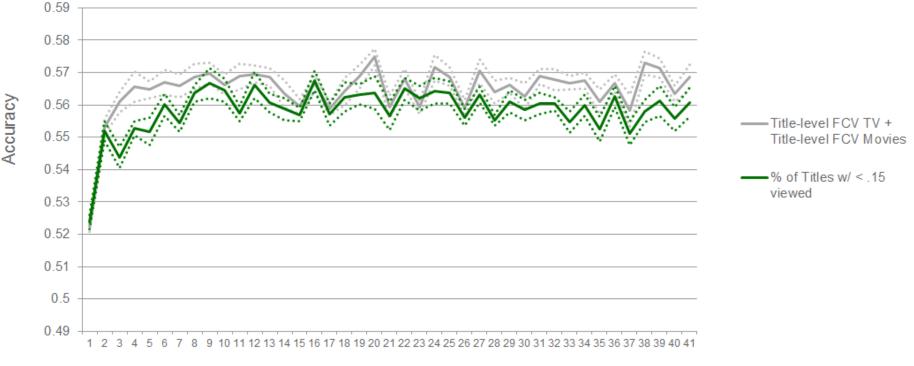
- # of titles viewed/# of streaming hours
- % of Titles with FCV <= 15%</p>
- % of sessions with FCV <= 15%</p>
- % of Active Days with a Play >= 90%
- % of Play Days with a Full Play
- % of Hours from Browse Plays

Variants for:

- TV vs movies
- Episode, season, show
- Timeframes
 - How the title was found

Nearly every engagement metric is highly correlated with total streaming hours

Best metric variants do provide some lift



Streaming Hour Cohorts

Controlling for streaming hours, these metrics improve retention prediction

New metrics are often tested as algorithm input signals (and vice-versa)

Acknowledgements:

- Carlos Gomez-Uribe
- Juliette Aurisset
- Kelly Uphoff

Experimentation

Algorithms